
1	

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/schultz/

Two-Way Data Binding with WinJS
By Dan Shultz, Joel Cochran, and James Bender, authors of Windows 8 Apps with HTML5 and JavaScript

There are many cases where it would be very helpful to push data from the UI back to the JavaScript object. This is
known as two-way binding, and it is not supported by WinJS out of the box. In this article, based on chapter 5 of
Windows 8 Apps with HTML5 and JavaScript, the authors show you how you can add support for this yourself.

You may also be interested in…

Two-way data binding is not directly implemented in WinJS. All data binding occurs in a one-way fashion from the
JavaScript observable object to the HTML elements in the View. Often, however, you want data to flow in both
directions. It makes sense that, when a user updates the value in a textbox or any other control, that value should
be pushed back into the JavaScript object. While it is highly likely that two-way binding will be supported in the
future, the good news is that, thanks to the great community of developers out there, you don’t have to wait for
Microsoft. In this article, we’ll be basing our work on code Phil Japikse posted on his blog at
http://skimedic.com/blog. Phil is a Microsoft MVP and a friend of the authors, and we thank him for his ongoing
contributions to the community.

NOTE: Phil Japikse, a long time Microsoft developer, community speaker and organizer, and advocate of the
Model-View-ViewModel (MVVM) pattern, developed the two-way data binding approach this article is based on.
You can find more of Phil’s work at http://skimedic.com/blog/. Our thanks to Phil for all of his great work!

As this is code that we may want to use in many places, let’s create a JavaScript file named BindingSupport.js
for these helpers and add a reference to the new file in default.html:

<link href="/css/default.css" rel="stylesheet" />
<script src="js/Person.js"></script>
<script src="js/BindingSupport.js"></script> #A
<script src="/js/default.js"></script>

#A Add a reference to the new BindingSupport.js file.
To add the missing two-way binding functionality, we’re going to use another feature of WinJS known as a

binding initializer, which is a function that is called when a binding is initialized. We’re going to use this initializer to
add an event handler to the HTML element (also known as the destination object) that will itself update the
JavaScript object (also known as the source or target object).

Before we start down the road of creating our binding initializer, let’s add some helper code, courtesy of Phil.
The code will create a namespace called BindingHelpers with two functions, getDestinationValue and
getSourceObject. The getDestinationValue function deconstructs the HTML element to extract the current
value of the bound attribute. The getSourceObject function locates the reference to the bound JavaScript
object. There is some pretty clever JavaScript involved, as you can see in listing 1, so give a big thanks to Phil for
slogging through it for us in advance.

Listing 1 Binding helper code to retrieve destination and source data
(function () {
 "use strict";

2	

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/schultz/

 WinJS.Namespace.define("BindingHelpers", {
 getDestinationValue: function (dest, destProps) { #A
 if (destProps.length === 1) { #B
 return dest[destProps[0]]; #B
 }
 else {
 var element = eval("dest['" +
 destProps.slice(0, destProps.length - 1).join("']['") +
 "']"); #C
 return element[destProps[destProps.length - 1]]; #C
 }
 },
 getSourceObject: function (source, sourceProps) { #D
 if (sourceProps.length === 1) { #E
 return source; #E
 }
 else {
 return eval("source['" + sourceProps #F
 .slice(0, sourceProps.length - 1)
 .join("']['") + "']");
 }
 }
 });
})();

#A We’ll use BindingHelpers.getDestinationValue to extract the new value entered in the textbox.
#B If only one attribute is bound, return its value.
#C If multiple attributes are bound, return the last value.
#D We’ll use BindingHelpers.getSourceObject to get the bound object.
#E If only one object property is bound, return it.
#F If multiple object properties are bound, return the last one.

With our helper code in place, we can now declare a function as a binding initializer. We’ll do that by passing the
desired function to WinJS.Binding.initializer as seen in listing 2.

Listing 2 Declaring a Binding initializer
WinJS.Namespace.define("BindingDirection", { #A
 twoWay: WinJS.Binding.initializer(#B
 function (source, sourceProps, dest, destProps) { #C
 dest.oninput = function () { #D
 var newValue = BindingHelpers
[CA].getDestinationValue(dest, destProps); #E
 var targetObject = BindingHelpers
[CA].getSourceObject(source, sourceProps); #F
 var oldValue = targetObject[sourceProps[sourceProps.length - 1]];#F
 if (oldValue !== newValue) { #G
 targetObject[sourceProps[sourceProps.length - 1]] = newValue; #G
 }
 };
 })
});

#A Create a namespace for the initializer.
#B Define a function named twoWay and call WinJS.Binding.initializer.
#C Pass a function with the binding initializer signature.
#D Process the oninput event. This is different from Phil’s original code that used onchange.
#E Using the helper we defined previously, get the new value from the textbox.
#F Using the helper we defined previously, get the current value from the bound object.
#G If the values are different, update the bound object.

Other than the namespace names, this example only has one difference from the original code posted by Phil.
Instead of processing the onchange event, we are processing the oninput event. The reason is simply one of
timing: onchange will only fire when the input element loses focus. That means that the binding evaluation will
only occur when the user moves to another field. The oninput event will fire every time the input value changes,
including if the user uses copy and paste to populate the field. This approach is akin to using
UpdateSourceTrigger=PropertyChanged in XAML or valueUpdate: ‘aftekeydown’ in KnockoutJS. If you
prefer to not have the binding event fire immediately, use onchange instead of oninput.

3	

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/schultz/

Now with the binding initializer defined, we just need to add it to the HTML element’s data-win-bind
instructions. And, since we don’t need to process the update in JavaScript, we can remove the id element and the
update button.

<input type="text" data-win-bind="value: salary BindingDirection.twoWay" />

Note that the data-win-bind now includes a reference to the binding initializer. It’s worth noting that in yet
another quirk, the reference to the binding initializer also does not follow the traditional JavaScript object pattern.
Since we’ve removed the button don’t forget to remove or comment out the button’s event handler code in
default.js. If you don’t you’ll get an exception at runtime.

Summary
Thanks to HTML5’s ability to handle custom data attributes, WinJS is able to provide a robust data binding system.
Data binding will greatly ease your development efforts and open up a wealth of options to enhance your UI.
Mastering these topics is crucial to crafting your Windows Store app. In this article, we gave you a tutorial on two-
way binding, used when you want to push data from the UI back to the JavaScript object.

4	

For Source Code, Sample Chapters, the Author Forum and other resources, go to
http://www.manning.com/schultz/

Here are some other Manning titles you might be interested in:

Dependency Injection in.NET
Mark Seemann

Windows Phone 7 in Action
Timothy Binkley-Jones, Massimo Perga and Michael Sync

C# in Depth, Third Edition
Jon Skeet

Last updated: 8/2/13

