
CASE STUDY:
Gamesys

“If we were able to continuously develop and operate several high-
volume games in production with such a small team, it was partly thanks
to PostSharp.”

Yan Cui
Senior Backend Developer
Gamesys

2

Overview
Gamesys serves around one million daily active users across its social
games. Their backend services handle more than 250 million requests per
day. Despite its massive scale, this distinctive service is being maintained
by a remarkably small development team of just seven super-productive
individuals. They chose PostSharp to automate the implementation of
their design patterns, outsourcing mundane tasks to the compiler so they
can focus on what matters.

Small team, big challenges
Although Gamesys employs more than 1,000 people globally and
operates in a number of markets across the UK, Europe and the US,
the Social team’s backend services are overseen by a small team of
developers. As such, it is critical that the team minimize inconveniences
and concentrate on tasks that are essential to the work at hand.

“With a small team of seven developers who are responsible for
everything that happens on the back end, it’s imperative that we allow
them to focus on things that add value to our players and maximise
their productivity,” says Yan Cui, Senior Backend Developer at Gamesys’s
Social team.

The team is responsible for building scalable backend services to support
Gamesys’ social games on mobile devices and Facebook. Across the
company’s range of social games, it has around one million daily active
users, and its backend services receive around 250 million requests per
day. This requires the team to deliver high-quality solutions that will
enable the backend team to work at peak efficiency.

The team has worked on several projects that presented various
challenges and called for comprehensive problem-solving approaches:

1. Performance monitoring;

2. Error handling; and

3. Localization.

“Thanks to PostSharp, we
were able to localize over
95 percent of the game
with just one line of
code and save potentially
hundreds of man hours
over the lifetime of
the game.”

Yan Cui
Senior Backend
Developer
Gamesys

Gamesys
 The market leader in the field of real money gaming
improves productivity and reduces development and

maintenance costs with PostSharp.

3

Why Gamesys chose PostSharp
The team chose PostSharp over alternative solutions for a number
of reasons:

• PostSharp offers the most complete support of features they have
been looking for, such as:

 𐐬 The ability to multicast aspects using filters, therefore targeting
several methods employing a single line of code;

 𐐬 The ability to intercept events; and

 𐐬 The ability to introduce members dynamically.

• PostSharp provides the best runtime performance, as most of the work
is done at compile time.

• PostSharp works consistently across public, private and static members
and does not depend on an object that is constructed by the
IOC container.

• PostSharp enables developers to automatically verify at build time
how aspects are being used, failing the build if an aspect has been
applied to an inadequate method.

“When I first joined Gamesys in 2010, our code base was littered with
cross-cutting concerns such as exception handling and validation, and in
general the control flows were so convoluted that it was difficult to see
what the application was actually doing a lot of the time,” says Yan. “So
when I encapsulated those repeated patterns into several aspects and
cleaned up our code base using PostSharp, it was all the motivation and
convincing everyone needed.”

Performance Monitoring: Solved
For Gamesys, it is essential to have visibility of both what and how their
application is doing. Therefore, the company needed a solution that
would make it easy for its developers to track execution time and count
of service entry points, IO operations, and CPU-intensive methods.

Taking a traditional approach to solve this would have led to a lot of
boilerplate code and would have cluttered the company’s code base.

With PostSharp, the team created a pair of aspects – LogExecutionTime
and LogExecutionCount – to track the execution time and the count of any
performance-sensitive method.

4

The pair of aspects records execution metrics pertaining to these
methods and funnels them to an in-memory aggregator that aggregates
the per-instance metrics and publishes them to Amazon CloudWatch
periodically.

LogExecutionTime

OnEntry

OnSuccess
MetricsAggregator

Amazon
Cloudwatch

Start timer

Invoke method

Record metric
End timer

Error Handling: Solved
Effective error handling presented a real challenge for Gamesys, as the
company had hundreds of specific errors for each of its games.

Every request to the company’s client-facing services has a matching
response object, which derives from a BaseResponse class that looks like
the following:

 public abstract BaseResponse
 {
 public int? ErrorCode { get; set; }
 public string ErrorMessage { get; set; }
 }

When a request fails for whatever reason (e.g., a player tries to buy a
Broadaxe but has run out of space in his or her backpack), they always
return a response object back to the client with an ErrorCode so that the
client can address it depending on the type of error.

The team created a custom PostSharp aspect, an ExceptionHandler, which
provides team members with desired functionality, and which is now a
core piece in the company’s infrastructure.

“Over the years,
Postsharp has helped
us to save over tens of
thousands lines of code .”

Yan Cui
Senior Backend
Developer
Gamesys

5

The team multicast the aspect to all methods that are service entry
points so that anytime an exception is thrown and bubbles up, the
aspect will:

1. Capture the exception information;

2. Log it with Gamesys’ logging infrastructure;

a. Record all exceptions in the ElasticSearch cluster;

b. Push critical (all the custom exceptions specify a SeverityLevel)
exceptions that warrant more urgent attention to Sentry, which
sends notifications to the relevant team members;

3. Create a response object of the correct type;

4. Populate the ErrorCode and ErrorMessage properties; and

5. Return the dynamically created response object.

“This simple aspect is reused in every project and plays an important role
in our infrastructure,” says Yan.

ElasticSearch Sentry

Logger
ExceptionHandler

Log

Client

OnException

Log ExceptionGenerate
response

object

Localization: Solved
“It was something of a mammoth task when we decided to localize the
game Here Be Monsters for Flash and iOS clients, as we have more than
3,500 items and 1,500 quests in the game, with more text than the first
three Harry Potter books combined,” says Yan.

With the conventional approach, the client would consume a gettext
file containing all of the translations, and anywhere some text needs
to display, the gettext file would substitute the original text with the
localized text.

https://www.getsentry.com

6

This would lead to several issues:

• A large number of code files need to change during implementation.

• Maintenance overhead - all future changes need to take localization
into account.

• Duplicated efforts - need to replicate changes across client platforms.

• Hard to scale - complicates implementation and testing; easy for
regression to creep in during frequent release cycles.

To localize the game Here Be Monsters for Flash and iOS clients, the team
created custom aspects with PostSharp and performed localization on
the server as part of the pipeline that validates and publishes the data
(quests, achievements, items, etc.) captured in their custom CMS.

CMS Publisher
Generates platform

specific data

iOS

Flash

Server

Localise here

Requires localisation

As part of its solution, the Publisher would:

1. Ingest the gettext translation file.

2. Use the Localize aspect (see a simplified version here) to intercept
string property setters on DTOs to replace the input string with the
localized version.

3. Repeat for each language to generate a language-specific version of
the DTOs.

To automatically apply localization to all present and future DTO types,
they simply multicast the attribute and target all types that follow our
naming convention for DTOs:

 [assembly: Localize(AttributeTargetTypes = "*DTO")]

“With one line of code, we were able to localize over 95 percent of the
game and save potentially hundreds of man hours over the lifetime of the
game,” says Yan.

“If we were able to
continuously develop
and operate several
high-volume games in
production with such a
small team, it was partly
thanks to PostSharp.”

Yan Cui
Senior Backend
Developer
Gamesys

https://gist.github.com/theburningmonk/bfd5358d1c98fc62fbaa

7

Summary
The team at Gamesys is pleased with the results from using PostSharp:

• Improved productivity thanks to more concise and maintainable code;

• Less code to write, read and maintain, resulting in reduced
development and maintenance costs; and

• Fewer bugs.

“It’s difficult to measure how many lines of code and how much
development and maintenance costs PostSharp has helped us to save, but
over the years, we could have easily saved over tens of thousands lines
of code,” says Cui. “The fact that we are able to continuously develop and
operate several high-volume games in production with such a small team
is in part thanks to PostSharp.”

SharpCrafters s.r.o.
Namesti 14 rijna, 1307/2
150 00 Prague 5
Czech Republic

US: +1 866 576 5361

CZ: +420 270 007 790

www.postsharp.net

info@postsharp.net

