
CASE STUDY:
mobileX AG

“Sure, we achieved some considerable savings in terms of LOC. But more
importantly, the new code is much less complex and much easier to
maintain. This is what really saves time and money in the long run.”

Daniel Wolf
Project Manager
mobileX AG

2

Summary
When the lead developers at mobileX began a huge refactoring
project – migrating the company’s codebase to the .NET 3.5 framework
then rewriting their flagship application from WinForms to WPF – the
biggest challenge was to improve code maintainability by reducing code
complexity. They chose PostSharp for its out-of-the-box solutions that
eliminate code repetition without changing application architecture.

Lead developers migrate main app to .NET 3.5
framework
 After struggling with the company’s main product, an application that
grew into a monolith over the years, the lead developers at mobileX
received approval from management to upgrade to the .NET 3.5
framework and take advantage of higher-level APIs like WPF to improve
client-facing customizations.

“We just arrived at a point where many things needed improvement,” says
Daniel Wolf, Project Manager at mobileX. “It was far too hard to change
individual bits of it for our individual customers. At that point we got
permission to spend about half a year completely redoing much of the
main part of the application and another half a year reworking what we
already had and refactoring it.”

Custom application extensions required a lot of
repetitive code
Daniel’s team builds the front end of the company’s main application.
His team also develops custom extensions for clients and the logic
behind them can be quite complex depending on the number of
dependencies and validation rules between values controlled by different
parts of the UI.

As the number of diverse dependencies between inputs rises they often
become multi-layered, where the input in control A determines the
number of input selections available for controls B and C. So, when the
value of control A is changed, controls B and C need to be updated in
exactly the right order to avoid erroneous results.

“We just wanted some
out of the box solutions
we could apply to some
classes and not others
without a huge change
to our existing code
base.”

Daniel Wolf
Project Manager
mobileX AG

mobileX AG
 A mobile workforce management solutions provider

reduces code complexity and improves code
maintainability in its applications with PostSharp.

3

Using a traditional approach, the team had to be very careful with any
implementation, attaching and later detaching, event handlers. Because
attaching and detaching takes place at different times, it was easy for
team members to forget to detach – leading to memory leaks.

Why mobileX chose PostSharp
During that time, Daniel and the other lead developers looked at
several technologies they had not used before. They soon came to the
conclusion that Aspect-Oriented Programming was the best solution for
the job at hand but they weren’t keen on how dynamic proxies forced
developers into their architecture rather than adapting to the developer’s
architecture.

That’s when they discovered PostSharp and the benefits of compile-time
weaving.

“There was no other product on the market that could do what we
wanted to do,” says Daniel. “We wanted aspect orientation to be one tool
among others in our toolbox. We didn’t want to have to change anything
to use it,” he said. “We just wanted some solutions that were out of the
box and that we could just apply to some classes and not apply to other
classes, and they would not mean a huge change to our existing code
base.”

How mobileX implements PostSharp
Using PostSharp, the team at mobileX built a number of custom aspects
to cover important use cases including INotifyPropertyChanged,
AutoWiring and Const.

INotifyPropertyChanged
In GUI programming, one very repetitive task is implementing the
INotifyPropertyChanged interface and making sure all relevant properties
throw an event when changed. This simple aspect can be applied to any
read-write property and will automatically add the required glue code,
including the test if the new value actually differs from the old one.

“This attribute takes care of those hundreds of simple properties without
too much logic in them,” says Daniel. “It is a clean solution that allows
us to write succinct code and it dramatically improves readability, since
it allows us to use automatic properties most of the time. Without it, all
those properties would have to be implemented explicitly. In the past, the
required backing fields used to clutter our code without adding any value.

4

AutoWiring
This aspect is the “bigger brother” of the INotifyPropertyChanged
aspect. You apply it to a property and tell it which values the property
depends on by giving it a list of binding-style property paths. It then
tracks changes to all properties along those paths, much the same way
WPF does. If any of these input values change, the property value is re-
evaluated, and a change event is raised if appropriate.

“Handling change notifications used to be a real challenge,” says Daniel,
“especially in those cases where changes to one property need to trigger
a change in another property, which again needs to trigger changes
elsewhere. We used to end up with lots of hard-coded dependencies,
where one property would raise change events for a whole bunch of
other properties that depended on it. It was hard to get right and a
maintenance nightmare afterwards. Now, with AutoWiring, we simply
declare what values a property depends on. And it just works – no matter
how complex the dependencies.”

If the team were to refactor the code, it would consider using ready-made
aspects shipped with PostSharp:

“It seems PostSharp Model Patterns Library now offers a similar feature
out-of-the-box, with even less manual work. Unfortunately, the feature
was still in development when we needed it” says Juan, a colleague of
Daniel.

Const
This attribute can be applied to any property that only has a getter. On
first access, it caches the return value. On every subsequent access, it
simply returns the cached value.

“This aspect may seem trivial at first, but turns out to be a real asset when
it comes to writing efficient code,” says Daniel. “Many properties need
to perform expensive operations to calculate their value. In the past we
either pre-computed and assigned these values in the constructor, which
meant a delay even if the property was never actually accessed, or we
calculated the value within the property getter, which helped initial load
time but meant an additional delay on each property access – even for
properties we knew would not change. If we really wanted to maximize
performance, we had to use additional backing fields to implement lazy
loading. Now, we simply put all the logic into the property’s getter and
decorate it with the Const attribute. And just like that, we get lazy loading
and optimal performance.”

“Sure, we achieved some
considerable savings
in terms of LOC. But
more importantly, the
new code is much less
complex and much easier
to maintain. This is what
really saves time and
money in the long run.”

Daniel Wolf
Project Manager
mobileX AG

5

SharpCrafters s.r.o.
Namesti 14 rijna, 1307/2
150 00 Prague 5
Czech Republic

US: +1 866 576 5361

CZ: +420 270 007 790

www.postsharp.net

info@postsharp.net

Simpler code that’s easier to maintain
The team calculated a total savings of over ten thousand lines of code
(LOC) on the project by using PostSharp, but believes the real savings
come from reduced code complexity and improved maintainability.

“Can I look at some piece of code and immediately understand what it
does and how it works? Is it easy to spot errors and fix them without
breaking code elsewhere? That’s what really counts. And this is where
PostSharp shines,” says Daniel. “Sure, we achieved some considerable
savings in terms of LOC. But more importantly, the new code is much less
complex and much easier to maintain. This is what really saves time and
money in the long run.”

