
10 Reasons You MUST Consider
Pattern-Aware Programming

Developers spend up to 20% of
their time writing repetitive code
that machines could generate more
reliably. Automate the boring side of
programming and get a 19x ROI.

PATTERN-AWARE PROGRAMMING 2

Developers spend up to 20% of their time writing repetitive code that machines could
generate more reliably. Automate the boring side of programming and get a 19x ROI.
Within this document we discuss the problem of duplicated source code, also known as the notorious boilerplate code that stems from manual
implementation of patterns.

We challenge the notion that patterns in software development are limited to architecture and design but do not apply to the implementation
itself. Instead, we assert that the absence of support for patterns in programming languages is a chief cause of boilerplate code. We propose
introducing support for patterns into mainstream programming languages—a concept we name pattern-aware compiler extensions.

This guide is written for all organizations for which software development is critical, but that struggle with high development cost, long time
to market, poor quality (even random defects) and shortage of qualified engineers (with the need for engineers to do meaningful work, not
repeating mundane tasks). It is especially written for CTOs, software architects and senior developers in software-driven organizations—
specifically in financial, insurance, healthcare, energy and IT industries.

Is there a real problem? Do I need to address this?
As a developer, how many times have you found yourself:

 ● copying and pasting blocks of code to implement a
functionality (e.g. logging)?

 ● repeating the same pattern of code hundreds or thousands
of times—and wishing so-called “modern” programming
languages were a bit smarter?

 ● trying to understand the business logic behind a codebase
cluttered with technical code such as exception handling,
transaction management, audit or thread synchronization?

 ● struggling to add or modify functionality in an
existing software?

 ● debugging random failures in multi-threaded applications?

 ● wondering why it’s so hard to build enterprise-grade software
when the prototype seemed so simple?

If you’ve answered yes to any of the above questions, then you
have a problem with boilerplate code.

What is boilerplate? Why is it so ubiquitous? And more importantly,
what can we do about it? This is what you will learn in this
white paper.

The problem: existing compilers don’t support patterns
Whether it’s architecture, carpentry or mechanics, patterns are
essential to all construction and engineering disciplines. Learning
not only how to implement patterns, but also when and why to
choose them, is an important part of the education of professionals
of these disciplines.

Software engineering is no exception. Patterns have been
successfully applied to software architecture and software design,
two preliminary steps of software constructions. As a result,
today’s software engineers are trained to think in terms of patterns.
However, when it comes to implementation, developers don’t have
the right tools.

Conventional programming languages miss a concept of patterns.
Therefore, software developers are forced to implement patterns
by hand. Just like artisan carpenters would manufacture dozens of
almost (not totally) identical joints to build a cabinet, a software
developer would add almost identical exception handling logic to
hundreds of functions by hand. The difference, however, is that
the artisan carpenter produces a piece of art, while the software
developer builds a utilitarian application.

You would not hire artisan carpenters to build a utilitarian industrial
building, would you?

Developers call this repetitive code boilerplate. Good developers
consider boilerplate code as a boring but necessary part of their
work. However, as this white paper will show, boilerplate code is
not inevitable.

Before looking into alternatives, take a few minutes to think about
the cost of boilerplate code for your organization.

PATTERN-AWARE PROGRAMMING 3

What is boilerplate costing you?
Boilerplate code is a major source of pain in enterprise development. It has the following consequences.

1. High development effort
 ● High development costs. Some application features require
a large amount of repetitive code when implemented with
existing mainstream compiler technologies. Source code is a
liability and needs to be maintained. Empirical research shows
that the total lifetime cost of a line of code is approximately
$14 for medium enterprise projects1. This cost also applies to
boilerplate code.

 ● Long time to market. The time developers spend writing
repetitive code is time they cannot spend focusing on what
actually matters. Businesses that come late to market can
miss opportunities.

2. Poor quality software
 ● High number of defects. Every line of code has a possibility
of defect, but code that stems from copy-paste programming
is more likely than others to be buggy because subtle
differences are often overlooked. Additionally, empirical
research2 shows that features that are implemented across a
large number of artifacts are more likely to contain defects.

 ● Lack of robustness. The difference between a prototype
and an enterprise-grade application partly lies in features
such as exception handling, transaction management and
auditor caching. These features typically exhibit the most
repetitive patterns and are tedious and boring to implement;
therefore, reliability features are often deliberately omitted,
unintentionally forbidden in some parts of the applications or
simply left untested and unreliable.

 ● Multi-threading issues. Conventional object-oriented
programming languages allow programs to be simultaneously
executed by several threads on multi-core CPUs, but these
languages do not guarantee that the program execution
is safe. As a result, developers have to build thread safety
manually using low-level thread synchronization artifacts such
as locks, events or interlocked operations.

In any sizable application, managing locks becomes a
nightmare. The problem occurs when developers forget a lock
(and it always happens). No big red sign appears immediately,
instead, the defect will hide in the code and will appear
randomly, most of the time in production. This is why thread
safety problems are so difficult to diagnose.

3. Difficulty to add/modify functionality
 ● Unreadable code that’s difficult to maintain. Business code is
often littered with low-level, non-functional requirements and
is more difficult to understand and maintain, especially

1 One developer typically produces 600 lines of code per month (McCon-
nell, Steve (2006). Software Estimation: Demystifying the Black Art. Pearson
Education). We used the estimate that the yearly cost of a developer is
$100,000.
2 Eaddy M., Zimmerman T., Sherwood K., Garg V., Murphy G., Nagappan
N., Aho A. (2008). Do Crosscutting Concerns Cause Defects? IEEE Transac-
tions on Software Engineering, Vol. 34, No. 4, July/August.

when the initial developer left. When you know that
maintenance accounts for 55% to 95% of the total cost of a
software system3, and that developers spend half of their time
on average trying to understand existing code, you realize why
it is so crucial to keep source code succinct and readable.

 ● Strong coupling. Conventional programming languages
don’t give you the tools to properly decompose the pattern
itself from its usage. As any software architect knows, poor
problem decomposition results in duplicate code and strong
coupling, and strongly coupled architectures are more difficult
to maintain.

For example, suppose you want to modify a pattern to change
the details of an audit policy. If your audit policy requires you
to add code to every single business function being audited,
you will end up modifying thousands of files. This is why weak
coupling and proper problem decomposition is so important.

4. Slow ramp-up of new team members
 ● Too much knowledge required. When new team members
come to work on a specific feature, they often must first learn
about caching, threading and other highly technical issues
before being able to contribute to the business value—an
example of bad division of labor.

 ● Long feedback loops. Even with small development teams,
common patterns like diagnostics, logging, threading, data
binding and undo/redo can be handled differently by each
developer. Architects have to make sure new team members
understand and follow the internal design standards and
have to spend more time on manual code reviews—delaying
progress while new team members wait to get feedback from
code review.

3 Roberto Minelli, Andrea Mocci and Michele Lanza (2015). I Know What
You Did Last Summer—An Investigation of How Developers Spend Their
Time. Published in 2015 IEEE 23rd International Conference on Program
Comprehension.

PATTERN-AWARE PROGRAMMING 4

Existing technologies
Several different tools can be used for pattern automation although they have not been designed specifically for this purpose. These tools
are often found under the categories of dependency injection framework, aspect-oriented programming framework, meta-programming
framework and assembly post-processor.

Dynamic Proxies and Dependency Injection
Frameworks
A proxy is a common design pattern in which a class operates as a
gateway to one or more other classes. A dynamic proxy is a class
generated on demand by a framework. Because they are generated
on-the-fly, dynamic proxies can add additional dynamic behaviors
to objects, such as logging or transaction handling.

Dynamic proxies aren’t flexible enough to implement all or even
moderately complex patterns on all types of classes. Dynamic
proxies also require special methods of instantiation, encourage
the alteration of the architecture to conform to the limitations
of dynamic proxies, and lack direct IDE support. While dynamic
proxies provide some of the benefits of pattern-aware compilers,
they fall far short of delivering on its full promise.

Code Generators
Every developer who has used an IDE is familiar with the code
generation paradigm, in which UI gestures or models, such as data
schemas, are converted into executable code. Visual Studio and the
.NET Framework define several components that attempt to turn
such cross-cutting behaviors as multi-threading into a matter of
code generation. This is of only limited effectiveness since it cannot
be used to add new behaviors to existing code.

Tools that generate source code from a model generally cause more
problems than resolutions. Although the initial source code does
not need to be written by hand, it still needs to be fine-tuned and
then maintained. In other words, these tools don’t only generate
source code, but also a lot of liabilities.

Refactoring Tools
There are many good refactoring tools on the market. Some of
those allow you to automatically generate code for a few patterns.
Refactoring tools are productivity extensions to the code editor,
not to the language itself. Refactoring tools allow you to write
boilerplate code faster, but they don’t allow you to reduce the
amount of boilerplate code. Boilerplate code still needs to be
maintained during years and can still hide defects.

Meta-Programming
Meta-programming, which has been made popular by dynamic
languages and more recently by the Roslyn compiler, allows
programs to change their behavior extensively at runtime and/or
build time.

Classic meta-programming tools operate at a very low level of
abstraction, for instance at MSIL level for post-compiler tools or at
syntax level for pre-compiler tools. Meta-programming is powerful,
but complex to learn and implement. Developers who have sought
to implement meta-programming as a comprehensive solution to
the problem of pattern implementation have found themselves
writing their own aspect-oriented framework (see below).

Aspect-Oriented Programming
Aspect-Oriented Programming (AOP) was invented at the Xerox
Palo Alto Research Center (PARC) in 1997 when Xerox engineers
designed AspectJ™, an AOP extension to the Java language. AspectJ
is today the undisputed leader in AOP solutions for Java, and there
are AOP extensions for most programming languages. AOP was
initially designed to address the problem of cross-cutting concerns.

AOP is an excellent technology and is extremely useful to automate
the implementation of patterns. However, AOP was not designed
specifically with patterns in mind. AOP and design patterns
were conceptualized independently. AOP needs to be better
conceptualized and communicated so it can get the attention it
deserves from the whole software development industry, not just
computer science majors.

AOP alone is not sufficient to implement patterns. Additionally, we
need the ability to analyze programs more deeply than AOP
usually does.

Static Program Analysis
Static program analysis is the analysis of a program without
executing it. An example of such tools is Microsoft Code Analysis
or Microsoft Code Contracts. Analyzing complex patterns requires
advanced static analysis abilities. The better analysis you can do,
the smarter the pattern automation can be, and the easier it will be
for the developer using the pattern.

Today’s mainstream compilers rely on fairly simple analysis.
They were designed a few decades ago to perform fast enough
within the constraints of the typical CPUs of that time. As typical
development machines get more and more computing power,
compilers can rely on more complex analysis and be more
intelligent, saving more work from developers.

Wouldn’t it be nice to produce high-quality, easy-to-maintain
software with less development effort and faster ramp-up of new
team members... without having to replace your existing compiler?

PATTERN-AWARE PROGRAMMING 5

How do programming language avoid code repetition
and promote component isolation?

procedures higher-order
functions

object
encapsulation

pattern
encapsulation

procedural
programming

functional
programming

object-oriented
programming

pattern-aware
compilers

The solution: pattern-aware compiler extensions
Pattern-aware programming extends conventional object-oriented
programming with a concept of pattern, which becomes a first-class
element of the programming language.

Are we arguing you should rewrite your applications and retrain
your team in a totally new programming language? Of course not!

Most mainstream programming languages can be extended with a
concept of pattern, avoiding the cost of rewriting applications in a
new language.

Because patterns are supported by the compiler extension (100%
compatible with your existing compiler), they do not need to be
manually implemented as boilerplate code. Features such as data
binding, logging, transactions are implemented in a cleaner, more
concise way, making development and maintenance much easier.

Pattern-aware programming is a relatively new concept that
defines the objective that programming languages should include a
concept of pattern, so that the programming language matches the
level of abstraction of human reasoning. In other words, pattern-
aware programming acknowledges that programming is a human
cognitive activity.

Programming languages should be designed for their users:
humans. Therefore, they should be designed with regards to
human cognitive habits and not solely for mathematical elegance
or for the ease of implementing the compiler itself. The result of
better designed programming languages is more succinct and more
understandable source code.

Why consider a pattern-aware compiler?
1. Stop writing boilerplate code and deliver faster

 ● Fewer lines of code mean fewer hours of work. Patterns
are repetitive, with little or no decision left to the developer.
However, repetition is exactly what computers are good at.
Let the compiler do the repetitive work and save development
time and costs immediately.

2. Build more reliable software
 ● Cleaner code means fewer defects. With a pattern-aware
compiler eliminating the boilerplate, your code becomes
easier to read, understand and modify, and contains
fewer defects.

 ● Reliability becomes much more affordable. Because they no
longer require so much manual coding, reliability features
such as caching or exception handling are much easier and
cheaper to implement, so you can spend your extra time
building a more robust app.

3. Add/modify functionality more easily after the first
release

 ● Cleaner and shorter code is easier to understand. After the
initial release, too much development time is spent reading
and analyzing source code, especially if the initial developer
leaves. With minimized boilerplate code, developers can
easily focus on business logic and spend much less time trying
to understand the source code.

 ● Better architecture is future-proof. When using a pattern-
aware compiler, features like logging, exception handling or
transactions are no longer scattered among thousands of files

but they are defined in one place, making it much easier and
faster to modify when necessary.

4. Help new members contribute quicker
 ● Achieve a better division of labor. Using a pattern-aware
compiler makes the introduction of new or junior team
members less onerous since they can focus on simpler, more
business logic-oriented tasks rather than having to waste time
learning complex architectural structures.

 ● Implement a tighter feedback loop. A pattern-aware compiler
can validate that hand-written code respects patterns or
guidelines, and it can detect nonconformities at build time
instead of during code reviews, testing, or in production.

PATTERN-AWARE PROGRAMMING 6

Top 10 features to look for
What should you look for when searching for a pattern-aware programming tool?

1. Ready-made pattern implementations
Would you build a graphing component or data grid yourself?
Probably not. Unless you have very specific requirements, you
would rather buy one tested by hundreds of customers from
a specialized vendor instead of paying your own developers to
reinvent something that has already been done.

The same thinking applies to patterns. While automating very
simple patterns can be straightforward with most frameworks,
implementing more advanced patterns can require a significant
amount of work and testing. When choosing a pattern-aware
compiler, check that there are ready-made implementations of
most of the patterns you need—or at least documented samples.

2. Threading models
Starting new threads and tasks in .NET languages is simple, but
ensuring that objects are thread-safe is not part of mainstream
programming languages. Several design patterns called threading
models have been described to guarantee your code executes
safely even when used from multiple threads. However, threading
models are typically too complex to be implemented manually.

Threading models raise the level of abstraction at which multi-
threading is addressed. Unlike working directly with locks and
other low-level threading primitives, threading models decrease
the number of lines of code, the number of defects, and reduce
development and maintenance costs—without having to have
expertise in multi-threading.

Several threading models exist and each is suitable in a different
situation. Some frameworks will force you into one specific
threading model (like functional programming forces you into the
immutable model) and claim it is a universal threading model.
This is not true. Choose a framework that offers several threading
models and allows you to choose the threading model of each
class separately.

3. Ability to automate complex patterns
Let’s face it. There will always be patterns that are specific to your
project and for which no ready-made solution will be available. In
this situation, you need a toolkit to build automation for your own
custom patterns.

Most products make it possible to implement simple patterns
requiring the interception of method invocations. For instance,
transaction and exception handling are fairly simple to implement
in any framework. It’s definitively a good thing that simple
requirements are simple to implement, but some frameworks
won’t let you implement more complex patterns because the
framework itself is either simplistic or designed for another
purpose (such as dependency injection).

When scouting for a pattern automation tool, look for the
following characteristics:

 ● Rich set of primitive transformations. Besides method
invocations, does the framework support interception of field
accesses or event firing? Does it allow you to introduce new
interfaces, methods or even custom attributes?

 ● Patterns composed of several transformations. Simple
patterns like transaction scopes are composed of a single
transformation. However, more complex patterns like data
binding require several transformations to work
closely together.

 ● Pattern composition. What happens when you add several
patterns to the same class or method? Good frameworks let
you express the pattern order and conflict in a
consistent manner.

 ● Simple API. Some frameworks allow you to perform arbitrary
transformations of MSIL code or source code AST but this is
overly complex. In good frameworks, the complexity of the
API matches the complexity of what you’re trying to achieve.

4. Ease to add patterns to source code
Whether you plan to use a ready-made pattern or you’ve built
a custom one, you need to tell the pattern-aware compiler to
apply the pattern to the desired pieces of code. Depending on the
situation, you will value different strategies:

 ● Custom attributes. Add a custom attribute to every single
method, field, or class to which you want to add the pattern.
This works great in situations where you need to hand-pick all
targets, such as adding a caching pattern.

 ● Multicast attributes. What if you want to add logging to all
public methods of a namespace and there are hundreds of
them? Look for frameworks that allow you to do that in a
single line of code.

 ● Inheritance. Some patterns such as NotifyPropertyChanged
naturally apply to all children of a class when applied to the
parent class.

 ● XML file. When you apply security policies to a code base,
it is more convenient to do it in a central XML file instead of
having the policy spread in several files. It makes the security
review easier.

 ● Programmatic (build-time). To implement policies composed
of several patterns, it is convenient to be able to add patterns
to your code programmatically, by executing your code at
build inside the compiler.

PATTERN-AWARE PROGRAMMING 7

5. Compatibility with your existing codebase
Despite the hype around functional programming languages,
C# and VB still remain an excellent platform for enterprise
development. Pattern-aware compiler extensions respect your
technology assets and will work incrementally with your existing
code base—there is no need for a full rewrite or redesign.

 ● Design neutrality. Due to implantation restrictions,
frameworks based on dependency injection can only inject
behaviors at the boundary between a service client and
a service implementation. They don’t make it possible to
add behaviors to private methods, fields, or any non-virtual
and non-interface method. Therefore, if you try to use
dependency injection frameworks to implement patterns, you
will be tempted to fragment your code into more classes and
interfaces than what would make sense for
dependency injection.

Dependency injection frameworks are great for dependency
injection. Don’t let them dictate every single aspect of
your design.

 ● Plain C# and VB. Languages such as F#, Scala, Nemerle,
Python, Ruby or JavaScript exhibit many pattern-aware
features, but they require you to rewrite your code and
retrain your staff. With a pattern-aware compiler extension,
your code is still 100% C# and VB, and it is still compiled by
the proved Microsoft compilers.

 ● Cross-platform. Check whether the tool supports all the
platforms you need: .NET Framework, Windows Phone,
WinRT, Xamarin, Portable Class Libraries, UWP, .NET Core, etc.

6. Build-Time Validation of Patterns
In a typical development structure, only a couple of developers
will actually create new patterns. These developers are typically
members of the “architecture” or “core” team. The large majority
of developers just use patterns. One of the main responsibilities of
the architecture team is to ensure that the rest of the developers
are highly productive, and a key element in developer productivity
is to detect errors as early as possible. The later a defect is
detected, the more expensive it is to fix.

This is why it is so important that developers who build aspects also
implement validation logic that verifies that the pattern has been
applied to a legitimate target.

For instance, it is a good practice to only cache immutable data. If
you build a caching aspect, you could enforce that the pattern is
only added to methods returning immutable types. Otherwise, you
may emit a build-time error.

When looking for a patter-aware compiler, look for the
following abilities:

 ● Validate pattern targets declaratively, by adding custom
attributes to the pattern class itself.

 ● Execute validation code at build-time and emit errors
and warnings.

7. Architecture Validation
In a large team, it can be really challenging to get all developers
to respect conventions. There may be several good ways to solve
the same problem, but inside the same project, it is much better if
the team agrees on one way and everybody respects it. Then this
agreed way of doing things becomes a pattern for the whole team.

Traditionally, controlling the respect of conventions, guidelines and
patterns was done manually during code reviews—a work-intensive
process that is sometimes executed days or weeks after the original
code has been written.

With a pattern-aware compiler, you can automate the verification
of hand-written code against the rules of the pattern the team
decided upon. If any anomaly is found, the build will just fail.

When looking for a pattern-aware compiler, look for the
following abilities:

 ● Access assembly metadata at runtime using the familiar
System.Reflection API.

 ● Execute complex queries in the whole assembly, for instance
“find all types derived from class C” or “find all methods
writing to field F”.

 ● Access expression tree of method bodies.

PATTERN-AWARE PROGRAMMING 8

8. Integration with Visual Studio
Many developers have reported being disappointed by free
aspect-oriented programming frameworks because they were no
longer able to understand and debug their code. After discussion,
it appeared that the cause of their disappointment is not a defect
of aspect-oriented programming itself, but rather the absence
of proper integration of the language extension within the main
development environment.

Developers expect the same level of integration for language
extensions as for the main language itself. Check for the presence
of the following features:

 ● Editor enhancements. One of the first questions you will
have when executing pattern-enhanced code is: how do I
know which patterns have been applied to this piece of code
without executing the program? This is the most important
question developers ask when they need to understand
their code. They don’t need to know how the patterns are
implemented under the hood but which patterns have been
applied. Pattern-aware compiler extensions can display this
information using adornments in the code editor in addition
to tooltips.

 ● Aspect Browser. The second question developers ask is: which
pieces of code has this pattern been applied to? This is best
answered using a tool window displaying all patterns in the
solution and their targets.

 ● Debugger enhancements. When you are debugging business
logic, do you want to step into caching logic? Probably not.
But when you are debugging caching logic, you surely don’t
want the pattern implementation to be stepped over. To

address these two scenarios, the pattern-aware extension
should offer an option allowing steps either into or over
pattern implementations.

9. Run-time performance
Start-up latency, execution speed and memory consumption matter.
Whether you’re building a mobile app or a back-end server, run-
time performance is of paramount importance.

Look for the following features:

 ● Build-time code generation. Unlike proxy-based solutions,
build-time tools modify your code at build time. No reflection
is needed at run-time.

 ● Build-time initialization. Many patterns make decisions based
on the shape of the code which they are applied. Make sure
that you can analyze the target code at build-time and use this
data at runtime.

10. Commercial support
Open-source AOP frameworks and metaprogramming tools pop up
regularly. Most often than not, the authors of these project invest a
few months into the project. Although it is tempting to believe that
having the source code gives you a safety net in case the project is
no longer supported, the reality is that such tools are very complex
and exhibit a steep learning curve. Your team may be able to fix
a bug if necessary, but it is definitively going to distract it from its
goal.

When choosing a framework, make sure it is backed by a stable
company with full-time employees assigned to maintenance
and support.

PATTERN-AWARE PROGRAMMING 9

The compatible way to write cleaner, simpler code
Highly

Compatible
Architecture Validation Tools

Refactoring/Cleaning Tools
(Resharper)

Proxy-based AOP
(Unity, Castle, Spring)

Dynamic Languages
(Python, Ruby, Javascript)

Niche Languages
(F#, Erlang)

Code it from scratch
in C#/VB

UI Components

Frameworks

Compatibility
with existing

code

Pattern
Aware

Compilers

Poorly
Compatible

Redundant /
Complex

Source Code
Size / Complexity

Concise /
Simple

Comparative Matrix
The following matrix shows some of the differences between pattern-aware compilers and alternatives:

Benefit
Pattern Aware

Compilers Vanilla C# / VB
Refactoring

Tools
Dependency

Injection

Build automation for your own patterns with
comprehensive toolkit Yes No No No

Ready-made standard design patterns implementations Yes No No No

Build thread-safe applications Yes No No No

Detect errors and non-compliance before code reviews Yes No No No

Leverage the skills of your most experienced developers
to the whole team Yes No No No

Compatible with Pattern-Aware Compilers Yes Yes Yes Yes

PATTERN-AWARE PROGRAMMING 10

What’s Holding You Back?
Now that you’ve seen some of the advantages of pattern-aware compiles, what’s holding you back?

Following are some of the typical questions:

Will compilation be slower?
Yes, as pattern-aware compilers introduce additional steps into
the compilation, there is a performance cost. This is the same for
custom tools run before C# compiler is executed such as XAML
compiler. How large this cost is mostly depends on how extensively
the pattern-aware compiler transforms the original program, which
depends on how much the patterns are leveraged. For comparison,
the best pattern-aware compiler extensions are generally a few
times faster than FxCop, which is frequently run for every build in
larger companies.

Eventually, the dilemma is to decide what is more important to
your organization: lower engineering time and higher quality on
one side, or lower machine-processing time on the other side.
Arguably, longer build time also means longer waiting times for
developers. When the build time becomes too long, developers
tend to switch to another task or get distracted, which can be a
significant productivity hurdle.

If you fear your build will be too long with a pattern-aware
compiler, chances are that it is already borderline at the moment,
so you will need to find a solution to this problem anyway. You
may want to consider at-build acceleration applications such as
IncrediBuild from Xoreax, which parallels builds and distributes
tasks over the network, allowing developers to use more CPU
resources than the ones available on their own
development machine.

Therefore, by combining a smarter but more CPU-intensive
compiler with build acceleration technologies, you can win twice:
reduce engineering time and reduce build waiting time.

Do we have to replace our existing compiler?
No. Reputable pattern-aware compiler extensions should always
be compatible with your existing Microsoft compiler, providing the
tooling and user experience you’re used to, including light-bulb

integration or errors and warnings displayed in the Visual Studio
Error List.

Microsoft’s compilers are not extensible. What is
the trick?
It is technically correct that Microsoft’s compilers are not extensible
for program transformation. Therefore, compiler extensions
don’t integrate with the compiler itself but with the build tool,
namely with MSBuild. Compiler extensions (including for instance
Microsoft Code Contracts) transform the binary output of the C#
or VB compiler. The format for this output is named MSIL, a well-
documented specification (ECMA-335) that, unlike the C# and VB
languages themselves, hasn’t changed since 2012.

The only right way to have thread safety is to use
purely functional languages
Purely functional languages are thread-safe because they strictly
follow the Immutable pattern. Pattern-aware extensions to object-
oriented languages can also offer the Immutable pattern with
other popular threading models.

A pattern-aware compiler does not force you into a specific
programming model. Unlike functional programming, which is
mainly popular in academic circles and in some specific industry
niches, pattern-aware compilers follow a pragmatic approach
where thread safety is achieved through a combination of build-
time and run-time verification. Because their objective is not to
reach 100% provable soundness at build time, threading models
for pattern-aware compilers can focus on providing the maximum
thread safety commercially realistic in a business setting.

Note that this approach to thread safety would be insufficient for
operating system kernels, aeronautic/space software, real-time
financial trading or control of nuclear power plants, but these
pieces of critical software typically cost an order of magnitude more
than typical business applications.

What Kind of Returns Should You Expect?
Another thing to look for is the ROI you should expect. In fact, the
bottom line is: if it doesn’t save you in development and training
time, expense, and/or speed to market, it’s not worth using. ROI
is not an abstraction, so let’s analyze the results of a mid-sized
enterprise development team working on a business software.

Let’s consider a 20 person team working on a 3 year project.
Suppose the average cost per team member and per year
is $100,000, all taxes and overhead costs inclusive (an
understatement in many countries). That means that the total
project cost is $6,000,000. According to empirical research , a 20
person team would produce approximately 430,000 lines of code
during 3 years. This gives us an approximate cost of $14 per line
of code.

We cannot quantify all benefits of using a pattern-aware compiler,
but empirical research4 and customer data shows that the number
of lines of code required to implement a same set of features
decreases by 5% to 25%. Let’s take a conservative 10% reduction.
Since the cost of developing and debugging software is roughly
linear to its number of lines of code, it means that we can expect
the total project cost to be $600,000 lower with a pattern-aware
compiler than with a traditional programming language.

Now let’s compare this to software license costs. Although the
whole team benefits from having a smaller code base, only

4 McConnell, Steve (2006-02-22). Software Estimation: Demystifying the
Black Art. Pearson Education

PATTERN-AWARE PROGRAMMING 11

developers (suppose there are 15 developers, 4 testers and 1
manager) need to purchase a license. Assuming this software is
in a typical price range for development tools ($600-$2000 per
developer for the first year, 30%-40% maintenance fee for the next
2 years), we can estimate that the total licensing cost is $20,000.

Let’s add the training cost. Typically, just the architecture team (say
2 people) need to acquire a deep understanding (say 3 days). The
rest of the development team (13 people) just need a superficial
understanding of the concepts (say ½ day). Thus the cost of training
the team would be under $11,000.

We have a total cost of adoption of $31,000 for a return of
$600,000. Despite all the conservative projections, this is still
a 19x return on investment! And we just took into account the
quantifiable benefits. Hidden multithreading defects, late arrival to
market or security leaks can cost you millions and even billions of
dollars, and pattern-aware compilers help address these
problems too.

Most software has nowhere near this kind of return—making
pattern-aware compilers one of the most profitable approaches you
can consider.

What’s Next?
Thank you for taking the time to discover the advantages of
pattern-aware programming. This document was created by
PostSharp Technologies, creators of the #1 pattern-aware compiler
extension for C# and VB.

PostSharp started as an open-source project in 2004 and due to its
popularity, it soon became a commercial product trusted by over
50,000 developers worldwide and over 1,000 leading corporations.
More than 10% of all Fortune 500 companies including Microsoft,
Intel, Bank of America, Phillips, NetApp, BP, Comcast, Volkswagen,
Hitachi, Deutsche Bank, Bosch, Siemens and Oracle rely on
PostSharp to reduce their development and maintenance costs.

With over a decade experience in boilerplate reduction, PostSharp
is now the #1 best-selling pattern-aware extension to C# and VB
and the only commercially-supported development tool for .NET.

PostSharp Technologies
Namesti 14 rijna, 1307/2

150 00 Prague 5
Czech Republic

hello@postsharp.net

Following are some resources to help you learn more:
 ● Download PostSharp and get a free 45-day trial at

https://www.postsharp.net/download

 ● Read customer stories at
https://www.postsharp.net/customers.

 ● Register for a free one-to-one demo at
https://www.postsharp.net/live-demo.

PostSharp is trusted by over 50,000 developers worldwide....

“PostSharp is a pretty amazing piece of
software. Abstractions like PostSharp are the

whole point of what the computer is supposed
to do for us, work that’s not fun, like logging

and transactions. So why not hide that?”
Scott Hanselman

Principal Program Manager at Microsoft

