
PostSharp 3.0
Reference Documentation

Copyright SharpCrafters s.r.o. 2013. All rights reserved.
Generated on 2013-10-09T22:03:38+02:00

PostSharp 3.0 Documentation

2

Table of Contents

7What's New in PostSharp?

13Deploying and Configuring PostSharp
13Requirements
14Installing PostSharp
17Deploying License Keys
25Configuring PostSharp
32Using PostSharp on a Build Server
33Restoring packages at build time
34Upgrading from PostSharp 2
36Installing PostSharp Unattended
38Incompatibilities with Other Products

41Working with Ready-Made Aspects
41Working with the Diagnostics Pattern Library
55Working with the Threading Pattern Library
90Working with the Model Pattern Library

113Adding Aspects to Code
114Adding Aspects Declaratively Using Attributes
136Adding Aspects Using XML
137Adding Aspects Programmatically using IAspectProvider

141Developing Custom Aspects
141Developing Simple Aspects
178Understanding Aspect Lifetime and Scope
180Validating Aspect Usage
184Initializing Aspects
185Developing Composite Aspects
201Coping with Several Aspects on the Same Target
205Targeting Windows Phone, Windows Store or Silverlight
206Understanding Interception Aspects
208Understanding Aspect Serialization
210Testing and Debugging Aspects
232Advanced
235Examples

253Enforcing Design Rules
253Restricting Interface Implementation
258Controlling Component Visibility Beyond Private and Internal
270Developing Custom Architectural Constraints

281Working with Errors, Warnings, and Messages
281Ignoring and Escalating Warnings

PostSharp 3.0 Documentation

3

282Emitting Errors, Warnings, and Messages

285Combining with Other Technologies
285ASP.NET
285ILMerge
286Obfuscation Tools
286Microsoft Code Analysis (FxCop)

PostSharp 3.0 Documentation

4

About Design Pattern Automation

Conceptual
Documentation
PostSharp is a tool that allows development teams to achieve more with less code in Microsoft .NET:

1. Software developers will write clean, stable, efficient, and concise code. Fewer lines of code
mean less time and fewer defects.

2. Software architects will be able to deliver partially or fully executable patterns, not just
coding guidelines. After having carefully identified and selected design patterns, architects
can code, in C# or Visual Basic, how the pattern should be implemented. Depending on the
complexity of the pattern, PostSharp will automatically implement the pattern and/or will
automatically validate that its manual implementation respects predefined validity rules.

This topic contains the following sections.

• About Design Pattern Automation at page 5
• PostSharp components at page 6
• How does PostSharp work? at page 6

PostSharp can be categorized as a Design Pattern Automation tool.

Design Pattern Automation is the use of tools to optimize productivity of development teams
implementing software based on patterns. Software patterns are general reusable solutions to a
commonly occurring problem. Software design patterns are patterns in the context of software design.

Typically, the architecture team would identify and select design patterns in an early phase of a
project. Architects would then create designs that implement the design patterns. These designs
typically include class diagrams, and instructions specifying how developers should implement the
design. Design specifications are usually expressed in natural language. Design Pattern Automation
refers to the ability to express designs in a formal language and use tools to help implementing the
design.

Tools can help developers and architects in implementing designs derived from patterns in two ways:

• Tools can automatically implement some of the artefacts and behaviors required by the
design, which then don't appear in source code. Design Pattern Automation therefore raises
the level of abstraction of the source code, and makes the design intent more apparent in
source code.

PostSharp 3.0 Documentation

5

PostSharp components

How does PostSharp work?

• Tools can validate hand-written code against design rules, from simple naming conventions
to complex rules involving analysis of source code. Without tools, this activity would have
only relied on code review.

Design Pattern Automation can extend to patterns that are not strictly considered design patterns:

• Design Pattern Automation extends to application-specific patterns (also named custom
patterns), which are specific to the language, framework, and problem domain of an
application. Althought these patterns are not general to the whole software engineering
industry, their implementation can also be automatically generated and/or validated.

• Design Pattern Automation extends to implementation patterns, which are mere repetitions
of code. Logging and exception handling belong to that category.

PostSharp is composed of the following frameworks and libraries:

• PostSharp Pattern Libraries provide ready-made, commoditized implementations of some of
the most common patterns in .NET. For more information, see section Working with Ready-
Made Aspects at page 41.

• PostSharp Aspect Framework allows you to automate the implementation of other code
patterns and address code repetitions that are specific to your own applications, or simply
that are not available off-the-shelf in a pattern library. PostSharp Aspect Framework is built
on the principle of Aspect-Oriented Programming (AOP), a well-established programming
paradigm, orthogonal to (and non-competing with) object-oriented programming or
functional programming, that allows to modularize the implementation of some features
that would otherwise cross-cut a large number of classes and methods. PostSharp contains
the most advanced AOP framework for Microsoft .NET. For more information, see sections
Developing Custom Aspects at page 141 and Adding Aspects to Code at page 113.

• PostSharp Architecture Framework is a static analysis tool that allows you to automate the
validation of design pattern implementations, to enforce design intend, or simply to verify
coding guidelines. The framework allows you to create constraint classes that encapsulate
the validation logic and that can be applied to code artefacts. The framework provides tools
to analyze the relationships between code artefacts and have access to the AST of method
bodies. For more information, see section Enforcing Design Rules at page 253.

PostSharp inserts itself in the build process and enhances or validates the output of the C# or VB
compiler. Although this might sound magic or dangerous, PostSharp's MSIL technology is stable and
mature, and has been used by tens of thousands of projects since 2004. Other .NET products relying
on MSIL transformation or analysis include Microsoft Code Contracts, Microsoft Code Analysis, and
Microsoft Code Coverage.

PostSharp 3.0 Documentation

6

What's New in PostSharp 3.0?

CHAPTER 1

What's New in PostSharp?

PostSharp has been around since the early days of .NET 2.0 in 2004. Since the first version, many
features have been added to make PostSharp the most popular and by far the most powerful tool for
aspect-oriented programming and design pattern automation in .NET.

The focus in PostSharp 3.0 was to deliver more value to customers with less initial learning. Instead
of having to learn the product before being able to build aspects, customers can now choose from a
set of ready-made implementations of some of the most popular design pattern, and apply them to
their application from the Visual Studio code editor, using smart tags and wizards. We also improved
support for Windows Phone, Silverlight, Windows Store and Portable Class Library.

Model Pattern Library

The NotifyPropertyChangedAttribute aspect is a ready-made implementation of the NotifyProperty-
Changed design pattern. The PostSharp.Patterns.Contracts namespace provides code contracts that
can validate, at runtime, the value of a parameter, a property, or a field.

Diagnostics Pattern Library

The LogAttribute and LogExceptionAttribute aspects provide a ready-made and high-performance
implementation of a tracing aspect. They are compatible with the most popular logging framework,
including log4net, nlog, and Enterprise Library.

Threading Pattern Library

PostSharp Threading Pattern Library invites you to raise the level of abstraction in which
multithreading is being addressed. It provides three threading models: actors (Actor), reader-writer
synchronized (ReaderWriterSynchronizedAttribute) and thread unsafe (ThreadUnsafeAttribute).
Additionally, BackgroundAttribute and DispatchedAttribute allow you to easily dispatch a thread back
and forth between a background and the UI thread.

Smart Tags and Wizards in Visual Studio

Smart tags allow for better discoverability of ready-made aspects and pattern implementations. When
the aspect requires configuration, a wizard user interface collects the parameters and then generates
the proper code.

Better platform support through Portable Class Libraries

Windows Phone, Windows Store and Silverlight are now first-class citizens. All features that are
available for the .NET Framework now also work with these platforms. All platforms are supported

PostSharp 3.0 Documentation

7

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogExceptionAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_Actor.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ThreadUnsafeAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_BackgroundAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_DispatchedAttribute.htm

What's New In PostSharp 2.1?

transparently through the portable class library. To provide this feature, we had to develop the
PortableFormatter, a portable serializer similar in function to the BinaryFormatter. All you have to do
is to replace [Serializable] with [PSerializable].

Unified deployment through NuGet and Visual Studio Gallery

Installation of PostSharp is now unified and built on top of Visual Studio Gallery and NuGet Package
Manager.

Transparency to obfuscators

PostSharp no longer requires specific support from obfuscators, as it no longer uses strings to refer to
metadata declarations.

Deprecation of old platforms

Support for Silverlight 3, .NET Compact Framework, and Mono has been deprecated.

The objective of release 2.1 was to fix a number of 'gray points' of the version 2.0, which added friction
to the adoption path of PostSharp, or even prevented people from using the product.

Better Build-Time Performance

We traded our old text-based compilation engine to a brand new binary writer.

Support for NuGet and Improved No-Setup Experience

PostSharp 2.1 can be installed directly from NuGet1. Local installation is no longer a requirement to
use the Visual Studio Extension. However, because the setup program creates ngenned images, it still
provides the faster experience.

Compatibility with Obfuscators

PostSharp can now be used jointly, and without limitation of features, with some obfuscators. See
Obfuscation Tools at page 286 for details.

Extended Reflection API

The class ReflectionSearch allows you to programmatically navigate the structure of an assembly: find
custom attributes of a given type, find children of a given type, find members of a given type, find
methods referring a given type or members, or find members accessed from a given method.

Architectural Validation

Architecture Validation allows you annotate your code with constraints, which define the conditions
in which your API is allowed to be used. Constraints are verified at build time and their violation
generates a build warning and an error. See Enforcing Design Rules at page 253 for details.

Compatibility with Code Contracts

PostSharp 2.1 can be used jointly with Microsoft Code Contracts. Aspects and contracts can be applied
to the same method.

1. http://www.nuget.org/List/Packages/PostSharp

PostSharp 3.0 Documentation

8

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PortableFormatter.htm
http://www.nuget.org/List/Packages/PostSharp
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_ReflectionSearch.htm
http://www.nuget.org/List/Packages/PostSharp

What's New In PostSharp 2.0?

Support for Silverlight 5.0

Silverlight 5.0 is added to the list of supported platforms.

License Server

The license server helps customer manage and deploy license keys. The license server is a simple ASP.
NET application that can be deployed easily on any Windows machine. Its use is optional.

PostSharp 1.0 and 1.5 made aspect-oriented programming (AOP) popular in the .NET community.
PostSharp 2.0 makes it mainstream by enhancing convenience (Visual Studio Extension), reliability
(dependency enforcement), run-time performance (optimizer), and features (composite aspects,
property- and event-level aspects).

Visual Studio Extension

As developers start being comfortable with PostSharp and add more and more aspects to their code,
two questions become manifest: How can I know to which elements of code my aspect has been
applied? How can I know which aspects have been applied to the element of code I am looking at?
Answering these two questions is precisely what the PostSharp Extension for Visual Studio 2008 and
2010 has been designed for. It provides two new features to the IDE: an Aspect Browser tool window,
and new adornments of enhanced elements of code with clickable tooltip.

Composite Aspects (Advices and Pointcuts)

Part of the success of PostSharp 1.5 was due to its ability to introduce aspects without appealing to
barbaric terms such as advices and pointcuts. So why to introduce them now? Because they make
it easier to develop complex aspects. Thanks to advices and pointcuts, you can implement complex
patterns such as observability awareness (INotifyPropertyChanged) with just a few lines of code. And
just with PostSharp 1.5, you can still write your own aspects without knowing about advices and
pointcuts.

Adaptive Code Generation

PostSharp 2.0 generates much smarter, faster, and smaller code than before. Let's face it: PostSharp 1.
5 was quite dumb. It generated a lot of instructions that your aspects did not even need. PostSharp 2.
0 analyzes your aspect to see which features are actually being used at runtime, and generates only
instructions that support these features. Result: you could probably not write much faster code by
hand.

Interception Aspect for Fields and Properties

PostSharp 2.0 comes with a new kind of aspect that handles fields and properties: Location-
InterceptionAspect (in replacement of OnFieldAccessAspect). The aspect is much more usable than its
predecessor; for instance, it is possible to call the field or property getter from the setter.

Interception Aspect for Events

The new aspect kind EventInterceptionAspect allows an aspect to intercept all event semantics: add,
remove, and fire.

PostSharp 3.0 Documentation

9

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm

What's New In PostSharp 1.5?

Aspect Dependencies

By enforcing aspect dependency rules, PostSharp ensures that aspects behave in a predictable and
robust way, even when multiple aspects are applied to the same element of code. This feature
is important for large and complex projects, where aspects may be written by different teams, or
provided by numerous third-party vendors who don't know about each other.

Instance-Scoped Aspects

In PostSharp 1.5, all aspects had static scope, i.e. there was a single instance of the aspect for every
element of code to which they applied. It is now possible to define aspects that have instance lifetime.
For instance, if the aspect is applied to an instance field, a new instance of the aspect will be created
for every instance of the type declaring the field. This is named an instance-scoped aspect.

Support for New Platforms
• Microsoft .NET Framework 4.0
• Microsoft Silverlight 3.0
• Microsoft Silverlight 4.0
• Microsoft Windows Phone 7 (Applications and Games)
• Microsoft .NET Compact Framework 3.5
• Novell Mono 2.6

Build Time Improvements

Just starting the CLR and loading system assemblies takes considerable time, too much for an
application (such as PostSharp) that is typically started very frequently and whose running time is
just a couple of seconds. To cope with this issue, PostSharp now preferably runs as a background
application

PostSharp 1.5 was published 3 years after the start of the project, and was the first release to be really
production-ready.

Aspect Inheritance

It is now possible to put an aspect on an interface and have it implicitly applied to all classes
implementing that interface. The same works with classes, virtual or interface methods, and
parameters of virtual or interface methods. Read more...

Reading assemblies without loading them in the CLR

In version 1.0, PostSharp required assemblies to be loaded in the CLR (i.e. in the application domain)
to be able to read them. This limitation belongs to the past. When PostSharp processes a Silverlight
or a Compact Framework assembly, it is never loaded by the CLR.

Lazy loading of assemblies

When PostSharp has to load a dependency assembly, it now reads only the metadata objects it really
needs, resulting in a huge performance improvement and much lower memory consumption.

PostSharp 3.0 Documentation

10

Build-Time Performance Enhancement

The code has been carefully profiled and optimized for maximal performance.

Support for Novell Mono

PostSharp is now truly cross-platform. Binaries compiled on the Microsoft platform can be executed
under Novell Mono. Both Windows and Linux are tested and supported. A NAnt task makes it easier
to use PostSharp in these environments.

Support for Silverlight 2.0 and the Compact Framework 2.0

You can add aspects to your projects targeting Silverlight 2.0 or the Compact Framework 2.0.

Pluggable Aspect Serializer & Partial Trust

Previously, all aspects were serializers using the standard .NET binary formatter. It is now possible
to choose another serializer or implement your own, and enhance assemblies that be executed with
partial trust.

PostSharp 3.0 Documentation

11

PostSharp 3.0 Documentation

12

CHAPTER 2

Deploying and Configuring
PostSharp

PostSharp has been designed for easy deployment in typical development environments. Over the
years, source control and build servers have become the norm, so we optimized PostSharp for this
deployment scenario. All components required for build are published as NuGet packages. These
packages are typically stored in source control, or can be restored from a package repository before
build. The user interface published as a Visual Studio extension (vsix package).

In most situations, PostSharp should work just fine without any advanced configuration. This chapter
includes a detailed description of all deployment and configuration scenarios

This chapter contains the following sections:

• Requirements at page 13
• Installing PostSharp at page 14
• Deploying License Keys at page 17
• Configuring PostSharp at page 25
• Using PostSharp on a Build Server at page 32
• Restoring packages at build time at page 33
• Upgrading from PostSharp 2 at page 34
• Installing PostSharp Unattended at page 36

2.1. Requirements
The following software components need to be installed before PostSharp can be used:

• Microsoft Visual Studio 2010 or 2012, except Express editions.
• Windows XP with SP3 or later.
• NuGet Package Manager 2.2 or later.

PostSharp 3.0 Documentation

13

Installing PostSharp

Note

The latest version of NuGet Package Manager will be installed automatically by PostSharp if Nu-
Get 2.2 is not already installed. This operation requires administrative privileges.

Caution

NuGet Package Manager is still considered unsuitable for some corporate environments,
especially in situations with a large number of Visual Studio solutions. Concerns principally
include package versioning management. Please contact our technical support if this is a concern
for your team.

2.2. Installing PostSharp
PostSharp is composed of two components:

• The Visual Studio Extension is the user interface of PostSharp. It extends the Visual Studio
editor and provides a new menu, option pages, and toolbox windows. The Visual Studio
Extension must be installed on each developer workstation but is not required on build
servers.

• The NuGet package contains the build-time components, which integrate into MSBuild, and
the run-time libraries, which should be deployed with the customer's application. The Nu-
Get package is typically included in the source repository or is restored before build from the
package repository.

This topic contains the following sections.

• Installing PostSharp at page 14
• Adding PostSharp to a project at page 15
• Removing PostSharp from a project at page 15
• Uninstalling PostSharp at page 16
• Updating PostSharp at page 16

By installing PostSharp, we mean installing its user interface on a developer's computer. This
procedure does not add PostSharp to any project.

To install PostSharp:

1. Download the file PostSharp-X.X.X.X.vsix from http://www.postsharp.net/download.

2. Open the file PostSharp-X.X.X.X.vsix.

PostSharp 3.0 Documentation

14

http://www.postsharp.net/download

Adding PostSharp to a project

Removing PostSharp from a project

3. Start Visual Studio.

4. Complete the configuration wizard. You will be asked to enter a license key or to start the trial
period. The wizard may ask the permission to install NuGet Package Manager or to uninstall
the user interface of PostSharp 2.1.

To add PostSharp to a project:

1. Open the Solution Explorer in Visual Studio.

2. Right-click on the project.

3. Click on Add PostSharp.

Tip

Remember that adding PostSharp to a project just means adding the PostSharp NuGet package.
If you want to add PostSharp to several projects in a solution, it may be easier to use NuGet to
manage packages at solution level. You may need to select the Include Prerelease option to
install a prerelease version of PostSharp.

Tip

NuGet Package Manager can be configured using a file named nuget.config, which can be
checked into source control and can specify, among other settings, the location of the package
repository (if it must be shared among several solutions, for instance) or package sources
(if packages must be pre-approved). See NuGet Configuration File2 and NuGet Configuration
Settings3 for more information.

To remove PostSharp from a project:

1. Open the Solution Explorer in Visual Studio.

2. Right-click on the project.

3. Click on Manage NuGet Packages.

4. Click on Installed Packages.

5. Find the PostSharp package and click on Remove.

2. http://docs.nuget.org/docs/reference/nuget-config-file
3. http://docs.nuget.org/docs/reference/nuget-config-settings

PostSharp 3.0 Documentation

15

http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings

Uninstalling PostSharp

Updating PostSharp

To uninstall PostSharp from Visual Studio:

1. Open Visual Studio.

2. Click on menu Tools, then Extensions and Updates.

3. Find the PostSharp extension and click on Uninstall.

4. Restart Visual Studio.

When updating PostSharp, remember that it is composed of two kinds of components: the Visual
Studio extension and the NuGet packages. These components can be updated separately. The Visual
Studio extension is only loosely coupled to the NuGet packages, so the versions do not need to match.

To update the Visual Studio extension:

1. Open Visual Studio.

2. Click on menu Tools, then Extensions and Updates.

3. Click on menu Updates, then Visual Studio Gallery.

4. Find the PostSharp extension and click on Update.

5. Restart Visual Studio.

Caution

Updating the Visual Studio extension for PostSharp does not update the PostSharp NuGet
packages.

To update the NuGet packages:

1. Open the Solution Explorer in Visual Studio.

2. Right-click on the solution.

3. Click on Manage NuGet Packages for Solution.

4. Click on Updates.

5. Find the PostSharp package and click on Update.

6. Select all projects, click OK.

PostSharp 3.0 Documentation

16

Registering a license key using the user interface

2.3. Deploying License Keys
This section explains how to install PostSharp license keys.

Whether you are using a free or commercial edition, PostSharp requires you to enter a license key
before being able to build a project.

This topic contains the following sections.

• Registering a license key using the user interface at page 17
• Subscribing to a license server using the licensing wizard at page 20
• Installing the license settings in source control at page 23
• License activation and audit at page 24

Registering a license key using the user interface is the prefered procedures for individual developers
and small teams.

To register a license key using the user interface:

1. Open Visual Studio.

2. Click on menu PostSharp, then Options.

3. Open the License option page.

4. Click on the Register a license link.

PostSharp 3.0 Documentation

17

5. Click on Register a license.

PostSharp 3.0 Documentation

18

6. Paste the license key and click Next .

PostSharp 3.0 Documentation

19

Subscribing to a license server using the licensing wizard

7. Read the license agreement and check the option I agree. Click on Next.

Tip

If you are registering the license key on a build server, also check the option Register
these settings for all accounts on this machine.

8. Click Next on the notice regarding license metering.

PostSharp Commercial Licenses are floating licenses. The license server is a product that provides
license leases to developers and computes how many developers are using the product at any time. If
the number of concurrent users exceeds the licensed number, the license administrator will receive an
email, and excess users will be allowed during a grace period. At the end of the grace period, only the
licensed number of concurrent users will be allowed. The duration of the grace period and the number
of excess users depend on the kind of license. By default, it is set to 30% of users and 30 days.

PostSharp 3.0 Documentation

20

Caution

Using a license server is substantially more cumbersome than other deployment options,
becauses it requires your team to maintain an ASP.NET application running IIS as well as an SQL
database. Remember that the use of the license server is purely optional and benevolent. Before
deciding to use the license server, you may want to consider other options.

To subscribe to a license server using the licensing wizard:

1. Ask your administrator to download and install the license server. It consists in a MS SQL
database and an ASP.NET application.

2. Open Visual Studio.

3. Click on menu PostSharp, then Options.

4. Open the License option page.

5. Click on the Register a license link.

6. Click Subscribe to a license server.

PostSharp 3.0 Documentation

21

7. Enter the URL where the license server has been installed. You should be able to access this
URL with a browser. Click Next.

PostSharp 3.0 Documentation

22

Installing the license settings in source control

8. Read the license agreement and check the option I agree. Click on Next.

Tip

If you are registering the license key on a build server, also check the option Register
these settings for all accounts on this machine.

Important

If you have subscribed to a license server, you will need periodic connections to the company
network. The licensing client will automatically try to renew a lease when it comes close to
expiration and if the license server is available. Lease duration and renewal settings can be
configured by the administrator of the license server. A connection to the license server is not
necessary while the lease is valid.

It is possible to install the license settings (license key or license server URL) in source control, so that
these settings are automatically applied during the build.

PostSharp 3.0 Documentation

23

License activation and audit

To install license settings in source control:

1. Create a file named PostSharp.Custom.targets in the directory that contains the Visual Studio
project file (*.csproj or *.vbproj), or in a parent of this directory (up to 8 levels from the project
file). Typically, you would create this file in the root directory of the source control project.

2. Add the following content to the PostSharp.Custom.targets file:

<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">
<PropertyGroup>

<PostSharpLicense>xxx</PostSharpLicense>
</PropertyGroup>

</Project>

In this code, xxx must be replaced by the license key or the URL to the license server.

Althought most software packages are protected with a license activation mechanism, we judged that
the practice is not adequate for software development tools:

• Source code is sometimes compiled several years after it has been written, and there is no
guarantee that the license activation server will still be functional.

• Development teams want their tools to be included in the source control repository together
with source code, and want the license key to be deployed the same way.

Instead of license activation, PostSharp relies on asynchronous, fail-safe license audit. PostSharp
audits the use of license keys on each client machine and periodically reports it to our license servers.
The mechanism does not require a permanent network connection, and PostSharp will not fail if the
license server is not available.

The licensing client will contact our licensing servers in the following cases:

• When a license is registered on a computer with the user interface.

Once per week, for every user and every device using PostSharp.

No personally identificable information is transmitted during this process except the license key. In
case we suspect a rough violation of the License Agreement, we reserve the right to contact the
legitimate owner of this license.

Tip

If license audit is not acceptable in your industry, please contact us with a request to disable
license audit. Our sales teams will evaluate your request and answer with a license key containing
an audit waiver. Global licenses and site licenses are not subject to license audit by default. The
use of the license server does not implicitly disable license audit.

PostSharp 3.0 Documentation

24

2.4. Configuring PostSharp
PostSharp accepts several configuration settings such as the version and processor architecture of the
target CLR, the search path of dependencies, and whether some features are enabled. Although the
default value of settings are appropriate for most situations, you may have to fine-tune some of them
to cope with particular cases.

Most PostSharp configuration settings are materialized as MSBuild properties. Therefore, adjusting
PostSharp settings does not differ from modifying the settings of any other build component, such as
the compiler.

You can modify PostSharp settings by one of the following ways.

• Using the PostSharp project property page in Visual Studio at page 26
• Editing the project file with a text editor at page 26
• Configuring several projects at a time using PostSharp.Custom.targets at page 27
• Using a command-line parameter of MSBuild at page 28

PostSharp 3.0 Documentation

25

Using the PostSharp project property page in Visual Studio

Editing the project file with a text editor

Most common properties can be edited directly from Visual Studio using the PostSharp project
property page.

The PostSharp property page in Visual Studio

To set a property that persistently applies to a specific project, but not to the whole solution, the best
solution is to define it directly inside the C# or Visual Basic project file (*.csproj or *.vbproj, respectively)
using a text editor.

Adding a project-level MSBuild property using Visual Studio

1. Open the Solution Explorer, right-click on the project name, click on Unload project, then
right-click again on the same project and click on Edit.

PostSharp 3.0 Documentation

26

Configuring several projects at a time using PostSharp.Custom.targets

2. Insert the following XML fragment just before the <Import /> elements:

<PropertyGroup>
<PropertyName>PropertyValue</PropertyName>

</PropertyGroup>

See Configurable MSBuild Properties at page 28 for the list of MSBuild properties used by
PostSharp.

Note

Since you are defining a standard MSBuild property, you are free to use all MSBuild
features. For instance, you can use conditional elements to define properties specific to
a given build configuration. See MSBuild configuration for details.

3. Save the file. If the project was open in Visual Studio, go to the Solution Explorer, right-click
on the project name, then click on Reload project.

Instead of editing every project file, you can define shared settings in a file named PostSharp.Custom.
targets and store in the same directory as the project file or in any parent directory of the parent file
(up to 7 levels from the project directory).

Files PostSharp.Custom.targets are loaded from the root directory to the project directory, so that files
that are closer to the project directory are loaded after and override files in parent directories.

Thanks to this mechanism, it is possible to define settings that apply to a large set of projects and
control the grain of settings.

Files PostSharp.Custom.targets are normal MSBuild project or targets files; they should have the
following content:

<? xml version="1.0" encoding="utf-8" ?>
<Project xmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<PropertyName>PropertyValue</PropertyName>

</PropertyGroup>
</Project>

See Configurable MSBuild Properties at page 28 for the list of MSBuild properties used by PostSharp.

Note

Since you are defining a standard MSBuild property, you are free to use all MSBuild features. For
instance, you can use conditional elements to define properties specific to a given build configu-
ration. See MSBuild configuration for details.

PostSharp 3.0 Documentation

27

Using a command-line parameter of MSBuild

General Properties

When an MSBuild property does not need to be set permanently, it is convenient to set is from the
command prompt by appending the flag /p:PropertyName=PropertyValue to the command line of
msbuild.exe, for instance:

msbuild.exe /v:detailed /p:PostSharpAttachDebugger=true /p:PostSharpBuild=Diag /p:PostSharpTrace=AspectWeaver

2.4.1. Configurable MSBuild Properties
Most configuration settings of PostSharp can be set as MSBuild properties.

Note

The integration of PostSharp with MSBuild is implemented in files PostSharp.tasks and Post-
Sharp.targets. These files defined properties and items that are not documented here. They are
considered implementation details and can change without warning.

This topic contains the following sections.

• General Properties at page 28
• Hosting Properties at page 29
• Diagnostic Properties at page 30
• Other Properties at page 31

The following properties are most commonly overwritten. They can be edited in Visual Studio using
the PostSharp project property page.

Property Name Description

PostSharpSearchPath A semicolon-separated list of directories added to the PostSharp search
path. PostSharp will probe these directories when looking for an
assembly or an add-in. Note that several directories are automatically
added to the search path: the .NET Framework reference directory, the
directories containing the dependencies of your project and the
directories added to the reference path of your project (tab Reference
Path in the Visual Studio project properties dialog box).

SkipPostSharp True if PostSharp should not be executed.

PostSharp 3.0 Documentation

28

Hosting Properties

Property Name Description

PostSharpOptimizationMode When set to OptimizeForBuildTime, PostSharp will use a faster
algorithm to generate the final assembly. The other possible value is
OptimizeForSize. The default value of the PostSharpOptimizationMode
property is OptimizeForBuildTime by default and OptimizeForSize when
the C# or Visual Basic compiler is set to generate optimal code
(typically, in release builds).

PostSharpDisabledMessages Comma-separated list of warnings and messages that should be
ignored.

PostSharpEscalatedMessages Comma-separated list of warnings that should be escalated to errors.
Use * to escalate all warnings.

PostSharpLicense License key or URL of the license server.

PostSharpProperties Additional properties passed to the PostSharp project, in format
Name1=Value1;Name2=Value2. See Configurable PostSharp Properties at
page 31.

PostSharpConstraintVerificationEnabled Determines whether verification of architecture constraints is enabled.
The default value is True.

Because PostSharp not only reads, but also executes the assemblies it transforms, it must run under
the proper version and processor architecture of the CLR. Additionally, for each version and processor
architecture. The following properties allow to influence the choice of the PostSharp host process.

Property Name Description

PostSharpTargetFrameworkVersion Version of the CLR that hosts the PostSharp process. The only valid value is 4.0.
By default, the value of this property is chosen according to the target
framework version of the project.

PostSharpTargetProcessor Processor architecture of the PostSharp hosting process. Valid values are x86
and x64. By default, the value of this property is chosen according to the target
platform of the project. If the target platform is AnyCPU, the architecture of the
current machine will be chosen.

PostSharp 3.0 Documentation

29

Diagnostic Properties

Property Name Description

PostSharpHost Kind of process hosting PostSharp. The following values are supported:

• PipeServer means that PostSharp will run as a background process
invoked synchronously from MSBuild. Using the pipe server results in
lower build time, since PostSharp would otherwise have to be started
every time a project is built. The pipe server uses native code and the
CLR Hosting API to control the way assemblies are loaded in
application domains; the assembly loading algorithm is generally
more accurate and predictable than with the managed host.

• Native uses the same native code as the pipe server, but the process
runs synchronously and terminates immediately after an assembly
has been processed. For this reason, it does not have the same build-
time performance as the pipe server, but it has exactly the same
assembly loading algorithm and is useful for diagnostics.

• Managed is a purely managed application. The assembly loading
algorithm may be less reliable in some situations because PostSharp
has less control over it. However, it is the same algorithm as the one
of PostSharp 1.5. The managed host is the only one that runs on
Mono.

PostSharpBuild Build configuration of PostSharp. Valid values are Release, Diag and Debug.
Only the Release build is distributed in the normal PostSharp packages.

PostSharpHostConfigurationFile A semicolon-separated list of configuration files containing assembly binding
redirections that should be taken into account by the PostSharp hosting
process, such as app.config or web.config.

Property Name Description

PostSharpAttachDebugger If this property is set to True, PostSharp will break before starting execution,
allowing you to attach a debugger to the PostSharp process. The default value
is False. For details, see Attaching a Debugger at Build Time at page 232.

PostSharpTrace A semicolon-separated list of trace categories to be enabled. The property is
effective only when PostSharp runs in diagnostic mode (see property
PostSharpBuild here above). Additionally, the MSBuild verbosity should be set
to detailed at least. For details, see Attaching a Debugger at Build Time at
page 232.

PostSharpUpdateCheckDisabled True if the periodic update check mechanism should be disabled, False
otherwise.

PostSharpExpectedMessages A semicolon-separated list of codes of expected messages. PostSharp will
return a failure code if any expected message was not emitted. This property
is used in unit tests of aspects, to ensure that the application of an aspect
results in the expected error message.

PostSharpIgnoreError If this property is set to True, the PostSharp30 MSBuild task will succeed even
if PostSharp returns an error code, allowing the build process to continue. The
project or targets file can check the value of the ExitCode output property of
the PostSharp30 to take action.

PostSharp 3.0 Documentation

30

Other Properties

How to define PostSharp properties?

List of properties

Property Name Description

PostSharpFailOnUnexpectedMessage This property should be used jointly with PostSharpExpectedMessages. If it set
to True, PostSharp will fail if any unexpected message was emitted, even if this
message was not an error. This property is used in unit tests of aspects, to
ensure that the application of an aspect did not result in other messages than
expected.

Property Name Description

PostSharpProject Location of the PostSharp project (*.psproj) to be executed by PostSharp, or the string None
to specify that PostSharp should not be invoked. If this property is defined, the standard
detection mechanism based on references to the PostSharp.dll is disabled.

PostSharpUseHardLink Use hard links instead of file copies when creating the snapshot for Visual Studio Code
Analysis (FxCop). This property is True by default.

2.4.2. Configurable PostSharp Properties
The previous section listed properties that are understood by PostSharp but must be defined as
MSBuild properties. Additionally, PostSharp has its own system of properties. A project can pass
properties to PostSharp by setting the MSBuild property PostSharpProperties. Some system
properties have already assigned a value and must not be overwritten.

Some properties are mapped to MSBuild properties and should be modified as described in
Configuring PostSharp at page 25.

Other properties can be set in Visual Studio using the PostSharp project property page (text box
additional properties). Alternatively, you can define the MSBuild property PostSharpProperties in
your project files or PostSharp.Custom.targets at page 25. For instance, the following MSBuild project
fragment defines the PostSharp property IgnoredAssemblies:

<PropertyGroup>
<PostSharpProperties>

$(PostSharpProperties);
IgnoredAssemblies=ObfuscatedThirdPartyLib1,ObfuscatedThirdPartyLib2

</PostSharpProperties>
</PropertyGroup>

The following table lists the PostSharp properties that may be set from the MSBuild project. The
second column specifies the name of the MSBuild property that influences the value of the PostSharp
property, if any.

PostSharp 3.0 Documentation

31

Accessing properties from source code

Using custom properties

Property Name MSBuild Property Name Description

Configuration Configuration Build configuration (typically Debug or Release).

Platform Platform Target processor architecture (typically AnyCPU, x86 or
x64).

MSBuildProjectFullPath MSBuildProjectFullPath Full path of the C# or VB project being built.

IgnoredAssemblies Comma-separated list of assembly short names (without
extension) that should be ignored by the dependency
scanning algorithm. Add an assembly to this list if it is
obfuscated, or contains native code, and causes
PostSharp to fail.

ReferenceDirectory MSBuildProjectDirectory Directory with respect to which relative paths are
resolved.

SearchPath PostSharpSearchPath Comma-separated list of directories containing
reference assemblies and plug-ins.

TargetFrameworkIdentifier TargetFrameworkIdentifier Identifier of the target framework of the current project
(i.e. the framework on which the application will run).
For instance .NETFramework or Silverlight.

TargetFrameworkVersion TargetFrameworkVersion Version of the target framework of the current project
(i.e. the framework on which the application will run).
For instance v4.0.

TargetFrameworkProfile TargetFrameworkProfile Profile of the target framework of the current project
(i.e. the framework on which the application will run).
For instance WindowsPhone.

Other properties are recognized but are of little interest for end-users. For a complete list of
properties, see PostSharp.targets.

You can read the value of any PostSharp property thanks to the following piece of code:

string value = PostSharpEnvironment.Current.CurrentProject.EvaluateExpression("{$PropertyName}")

By defining your own PostSharp properties, you can pass information from the build environment to
aspects, or to any code running in PostSharp. Custom PostSharp properties behave exactly as other
PostSharp properties, so they can be defined and read using the same procedures.

2.5. Using PostSharp on a Build Server
PostSharp 3 has been designed for frictionless use on build servers. PostSharp build-time components
are deployed as NuGet packages, and are integrated with MSBuild. No component needs to be

PostSharp 3.0 Documentation

32

Installing a License on the Build Server

See Also

installed or configured on the build server, and no extra build step is necessary. If you choose not to
check in NuGet packages in your source control, read Restoring packages at build time at page 33.

The License Agreement specifies that build servers don’t need their own license. PostSharp will
not attempt to enforce licensing if it detects that it runs in unattended mode. PostSharp uses
several heuristics to detect whether it is running unattended. These heuristics include the use of
Environment.UserInteractive, checking Process.SessionId (from Windows Vista, all processes
running in session 0 are unattended), or checking the parent process.

If this check does not work for any reason, you may use the license key of any licensed user for the
build server. This will not be considered a license infringement. However, it is better to report the issue
to our technical support so that we can fix the detection algorithms.

It is recommended to include the license key in the source control. See Deploying License Keys at
page 17 for details.

2.6. Restoring packages at build time
NuGet Restore is a feature of NuGet Package Manager that restores packages from their repository
during the build. This allows teams to avoid storing NuGet packages in source repository.

PostSharp is not fully compatible with NuGet Restore. The reason is that PostSharp modifies the
project file (csproj or vbproj, typically) to include the file PostSharp.targets. This file is required during
the build, otherwise PostSharp is not inserted in the build process, and simply does not work. Because
of the design of MSBuild, PostSharp.targets must be present when the build starts, so it cannot be
restored from the package repository during the same build. The build that triggers the package
restore will fail, and subsequent builds will succeed.

This behavior is acceptable on developer workstations. However, on build servers, you must ensure
that the packages are restored before the project is built.

To restore NuGet packages before build:

• Add a preliminary step before building the Visual Studio solutions or projects. This step
should execute the command NuGet.exe install packages.config -OutputDirectory

SolutionDirectory\packages for every packages.config file. where SolutionDirectory\packages
is the directory where the NuGet packages should be installed.

PostSharp 3.0 Documentation

33

Side-by-side installation

Tip

You can use PowerShell or MSBuild to execute the nuget install command to all packages.
config files in your source repository.

2.7. Upgrading from PostSharp 2
This section explains how to upgrade from PostSharp 2 to PostSharp 3.

PostSharp 3 can be installed side-by-side with PostSharp 2.0 and PostSharp 2.1 on the same machine.

However, both versions of PostSharp cannot be used together in the same project. Every project
can have only references to a single version of PostSharp. This applies both to direct and indirect
references. The PostSharp 3 compiler is not backward compatible with PostSharp 2, and PostSharp 3
will refuse to compile projects that have a reference to PostSharp 2. Therefore, you will typically use a
single version of PostSharp in every solution.

Tip

Other sections of this chapter, specifically Installing PostSharp at page 14, Deploying License Keys
at page 17 and Using PostSharp on a Build Server at page 32, are also useful if you need to
upgrade from an earlier version of PostSharp.

After you install PostSharp 3, you will still be able to open solutions that use PostSharp 2.

The Visual Studio extension of PostSharp 3 is backward compatible with PostSharp 2. However, both
versions of the extension cannot coexist. Therefore, PostSharp 3 will attempt to uninstall the Visual
Studio extension of PostSharp 2.

PostSharp 3.0 Documentation

34

Upgrading solutions

Upgrading source code

Caution

Do not upgrade to PostSharp 3 in the following situations:

• The solution must build on Visual Studio 2008 or on Mono.
• The application targets .NET Compact Framework or Silverlight 3.
• The application has dependencies to third-party libraries that have references to earlier

versions of PostSharp and have not been ported to PostSharp 3.
• Some aspects still use the old PostSharp.Laos.dll and have not been ported to the Post-

Sharp 2 API.

You can upgrade projects from PostSharp 2 to PostSharp 3 by adding the PostSharp NuGet package
to these projects.

To upgrade a solution from PostSharp 2 to PostSharp 3:

1. Open the Solution Explorer in Visual Studio.

2. Right-click on the solution.

3. Click on Manage NuGet Packages for Solution.

4. Click on Online.

5. In the search box, type PostSharp. You may want to select the Select prereleases option
(instead of the default Stable Only) to install a pre-release version of PostSharp.

6. Find the PostSharp package and click on Install.

7. Select all projects, click OK.

Note

This procedure may be cumbersome if you have a large number of solutions. Please contact our
technical support if you are in this situation.

Althought PostSharp 3 is mostly backward compatible with PostSharp 2 at source-code level, you may
need to perform small adjustments to your source code:

• Every occurrence of the _Assembly interface has been replaced by the Assembly classes. You
may have to change the signatures of some methods derived from AssemblyLevelAspect.

PostSharp 3.0 Documentation

35

http://msdn2.microsoft.com/en-us/library/ms146124
http://msdn2.microsoft.com/en-us/library/xbe1wdx9
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm

• Aspects that target Silverlight, Windows Phone or Windows Store must be annotated with
the PSerializableAttribute custom attribute.

• PostSharp Toolkits 2.1 need to be uninstalled using NuGet. Instead, you can install PostSharp
Pattern Libraries 3 from NuGet. Namespaces and some type names have been changed.

2.8. Installing PostSharp Unattended
PostSharp is composed of a user interface (a Visual Studio extension) and build components (Nu-
Get packages). NuGet packages are usually checked into source control or retrieved from a package
repository at build time (see Restoring packages at build time at page 33), so its deployment does not
require additional automation. The user interface is typically installed by each user. It does not require
administrative privileges.

Caution

The PostSharp user interface requires NuGet Package Manager 2.2, which is not installed by
default with Visual Studio. Installing NuGet requires administrative privileges on the local
machine.

You can install PostSharp automatically for a large number of users using a script.

To install PostSharp on a machine:

1. Ensure that NuGet 2.2 is installed. Your script will need to look for a file named NuGet.Core.
dll under the following directories. The search should include up to 2 levels of subdirectories.

• C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\Extensions for
Visual Studio 2010.

• C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\Extensions for
Visual Studio 2012.

2. If NuGet 2.2 is not installed, install it with the command line VsixInstaller.exe /q Nu-

Get.Tools.vsix. This command requires administrative privileges on the local machine. The
current version of NuGet.Tools.vsix can be downloaded from Visual Studio Gallery4. Note that
PostSharp is tested with versions that are current at the time of writing. If you need to be able
to restore a working development environment several years from now, it is a good idea to
archive a version of NuGet that is known to work with your version of PostSharp.

3. Execute command line VsixInstaller.exe /q PostSharp-VERSION.vsix. The file can be
downloaded from Visual Studio Gallery5. Exit codes other than 0 or 1001 should be
considered as errors.

4. http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c

PostSharp 3.0 Documentation

36

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c
http://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
http://visualstudiogallery.msdn.microsoft.com/27077b70-9dad-4c64-adcf-c7cf6bc9970c

4. Install the license key or the license server URL in the registry key HKEY_CURRENT_USER\

Software\SharpCrafters\PostSharp 3, registry value LicenseKey (type REG_SZ).

This procedure can be automated by the following PowerShell 2.0 script:

TODO: Set the right value for the following variables
$postsharpFile = "PostSharp-3.0.14-beta.vsix" # Replace with the proper version number and add the full path.
$nugetFile = "NuGet.Tools.vsix" # Add the full path.
$license = "XXXX-XXXXXXXXXXXXXXXXXXXXXXXXX" # Replace by your license key or license server URL.

$installNuget = $false

Check NuGet in Visual Studio 2010.
if (Test-Path "C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\devenv.exe")
{

$vsixInstaller = "C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\VsixInstaller.exe"

$nugetVs10Path = dir "C:\Program Files (x86)\Microsoft Visual Studio 10.0\Common7\IDE\Extensions" -Include "NuGet.Core.dll" -Recurse | select -First 1

if ($nugetVs10Path -eq $null)
{

$installNuget = $true
}
else
{

$nugetVs10Version = [System.Diagnostics.FileVersionInfo]::GetVersionInfo($nugetVs10Path)
Write-Host "Detected NuGet" $nugetVs10Version.FileVersion "for Visual Studio 2010."
if ($nugetVs10Version.FileMajorPart -lt 2 -or $nugetVs10Version.FileMinorPart -lt 1)
{

$installNuget = $true;
}

}
}

Check NuGet in Visual Studio 2012.
if (Test-Path "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\devenv.exe")
{

$vsixInstaller = "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\VsixInstaller.exe"
$nugetVs11Path = dir "C:\Program Files (x86)\Microsoft Visual Studio 11.0\Common7\IDE\Extensions" -Include "NuGet.Core.dll" -Recurse | select -First 1

if ($nugetVs11Path -eq $null)
{

$installNuget = $true
}
else
{

$nugetVs11Version = [System.Diagnostics.FileVersionInfo]::GetVersionInfo($nugetVs10Path)
Write-Host "Detected NuGet" $nugetVs11Version.FileVersion "for Visual Studio 2012."
if ($nugetVs11Version.FileMajorPart -lt 2 -or $nugetVs11Version.FileMinorPart -lt 1)
{

$installNuget = $true;

5. http://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

PostSharp 3.0 Documentation

37

http://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

}
}

}

if (-not (Test-Path $vsixInstaller))
{

Write-Host "Cannot find " $vsixInstaller
exit

}

Install NuGet
if ($installNuget)
{

Write-Host "Installing NuGet"
$process = Start-Process -FilePath $vsixInstaller -ArgumentList @("/q", $nugetFile) -Wait -Verb runas -PassThru
if ($process.ExitCode -ne 0 -and $process.ExitCode -ne 1001)
{

Write-Host "Error: VsixInstaller exited with code" $process.ExitCode -ForegroundColor Red
}

}

Install PostSharp
Write-Host "Installing PostSharp"
$process = Start-Process -FilePath $vsixInstaller -ArgumentList @("/q", $postsharpFile) -Wait -PassThru
if ($process.ExitCode -ne 0 -and $process.ExitCode -ne 1001)
{

Write-Host "Error: VsixInstaller exited with code" $process.ExitCode -ForegroundColor Red
}

Install the license key
Write-Host "Installing the license key"
$regPath = "HKCU:\Software\SharpCrafters\PostSharp 3"

if (-not (Test-Path $regPath))
{

New-Item -Path $regPath | Out-Null
}

Set-ItemProperty -Path $regPath -Name "LicenseKey" -Value $license

Write-Host "Done"

2.9. Incompatibilities with Other Products
PostSharp is not compatible with the following products or features:

PostSharp 3.0 Documentation

38

See Also

Product or Feature Reason Workaround

ILMerge Bug in ILMerge Use another product (such as SmartAssembly).

Edit-and-Continue Not Supported Rebuild the project after edits

Silverlight 3 or earlier No support for PCL Use PostSharp 2.1 or Silverlight 4

.NET Compact Framework No support for PCL Use PostSharp 2.1 or Windows Phone 7

Mono Not Supported Compile on Windows using MSBuild

Visual Studio Express Microsoft's licensing
policy

Use Visual Studio Standard Edition or superior

Delayed strong-name
signing on cloud build
servers

No way to unregister
verification of strong
names

Use normal (non-delayed) strong-name signing or use
build servers where you have administrative access.

PostSharp 3.0 Documentation

39

PostSharp 3.0 Documentation

40

List of available backends

CHAPTER 3

Working with Ready-Made Aspects

PostSharp Pattern Libraries are sets of ready-made aspects. Some of these aspects, such as logging,
are straightforward. Other aspects implement more complex design patterns such as the reader-
writer-synchronized threading model.

PostSharp currently includes the following pattern libraries:

Pattern Library Included aspects and pattern implementations

Diagnostics Pattern Library
at page 41

Logging

Model Pattern Library at
page 90

INotifyPropertyChanged, code contracts

Threading Pattern Library
at page 55

Reader-writer-synchronized threading model, thread-unsafe threading model, actor
threading model, thread dispatching.

3.1. Working with the Diagnostics Pattern
Library
The Diagnostics Pattern Library enables you to configure where logging should be performed and to
keep your log entries in sync as you add, remove and refactor your codebase. Currently, the library
provides a single aspect: LogAttribute.

This topic contains the following sections.

• List of available backends at page 41
• Changing the logging back-end at page 42

Name NuGet Package Description

Console PostSharp.Patterns.Diagnostics Logging using Console WriteLine(String)

Trace PostSharp.Patterns.Diagnostics Logging using Trace

Log4Net PostSharp.Patterns.Diagnostics.Log4Net

PostSharp 3.0 Documentation

41

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
http://msdn2.microsoft.com/en-us/library/xf2k8ftb
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
http://msdn2.microsoft.com/en-us/library/36hhw2t6
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Log4Net/

Changing the logging back-end

See Also

Name NuGet Package Description

NLog PostSharp.Patterns.Diagnostics.NLog

EnterpriseLibrary PostSharp.Patterns.Diagnostics.EnterpriseLibrary

To change the logging back-end:

1. Remove the NuGet package containing the previous back-end implementation, if any.

2. Add the NuGet package containing the new back-end implementation, if any.

3. If the new NuGet package contains several implementations, set the LoggingBackend property
in the PostSharp project file (MyProject.psproj) to the right value for the chosen logging
backend.

Reference

LogAttribute
LogExceptionAttribute

3.1.1. Adding Detailed Tracing to a Code Base
When you're working with your codebase it's common to need to add logging either as a non-
functional requirement or simply to assist during the development process. In either situation you will
want to include information about the parameters passed to the method when it was called as well as
the parameter values once the method call has completed. This can be a tedious and brittle process.
As you work and refactor methods the order and types of parameters may change, parameters may be
added and some maybe removed. Along with performing these refactorings you have to remember
to update the logging messages to keep them in sync. This is something that is easy to forget and
once forgotten the output of the logging is much less useful.

PostSharp offers a solution to all of these problems. The logging pattern library allows you to
configure where logging should be performed and the pattern library takes over the task of keeping
your log entries in sync as you add, remove and refactor your codebase. Let's take a look at how you
can add trace logging for the start and completion of method calls.

PostSharp 3.0 Documentation

42

https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.NLog/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.EnterpriseLibrary/
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogExceptionAttribute.htm

To add trace logging for the start and completion of method calls:

1. Let's add logging to our Save method.

public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

2. Put the caret on the Save method name and expand the Smart Tag. From the list select "Add
loggging".

3. The first option that you need to select is the Logging Level. For this example we will take the
default provided: it logs the method enters and exits, and include parameter values.

PostSharp 3.0 Documentation

43

4. The next page of the wizard gives you the opportunity to choose the logging backend that
you want to use. For this example select "System.Diagnostics.Trace" and click Next.

PostSharp 3.0 Documentation

44

5. The summary page gives you the opportunity to review the selections that you have made. If
you notice that the configuration is not what you wanted you can click the Previous button
and adjust your selections. If the configuration meets your needs click Next.

PostSharp 3.0 Documentation

45

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to
add the selected logging configuration to your codebase. It's at this point that PostSharp and
the logging pattern library will be downloaded from Nuget and added as references to your
codebase.

PostSharp 3.0 Documentation

46

7. Once the download, installation and configuration of PostSharp and the logging pattern
library has finished you can close the wizard and look at the changes that were made to your
codebase.

8. You'll notice that the code you added the logging to has changed slightly. PostSharp has
added a LogAttribute attribute to the method. Since we chose the default logging profile,
there is no argument to the LogAttribute attribute.

[Log]
public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

Note

This example has added a single attribute to one method. If you plan on adding this
logging to many different locations in your codebase you will want to read about using
the MulticastAttribute: Adding Aspects to Multiple Declarations at page 116.

PostSharp 3.0 Documentation

47

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm

See Also

9. If you were to run this method the trace logging that you added would output a log message
when entering the method and an entry when leaving the method. Note that the parameter
values are automatically included in the log message.

Now that you have logging added to the Save method you are able to change the method's name
as well as add and remove parameters with the confidence that your log entries will be kept in sync
with each of those changes. In combination with attribute multicasting (the article Adding Aspects to
Multiple Declarations at page 116, adding logging to your codebase and maintaining it becomes a
very easy task.

Reference

LogAttribute

3.1.2. Tracing Parameter Values Upon Exception
When you're working with your codebase it's common to need to add logging of exceptions either as
a non-functional requirement or simply to assist during the development process. In either situation
you will want to include information about the parameters that were passed to the method where
the exception is being caught and logged. This can be a tedious and brittle process. As you work
and refactor methods the order and types of parameters may change, parameters may be added and
some maybe removed. Along with performing these refactorings you have to remember to update
the exception logging messages to keep them in sync. This is something that is easy to forget and
once forgotten the output of the logging is much less useful.

PostSharp offers a solution to all of these problems. The logging pattern library allows you to
configure where logging should be performed and the pattern library takes over the task of keeping
your log entries in sync as you add, remove and refactor your codebase. Let's take a look at how
you can add trace logging of exceptions that includes the parameter values that were passed to the
method that is being logged.

PostSharp 3.0 Documentation

48

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm

To add trace logging of exceptions that includes the parameter values:

1. Let's add logging to our DoStuff method.

public void DoStuff(int i, int x)
{

Console.WriteLine(i/x);
}

2. Put the caret on the DoStuff method name and expand the Smart Tag. From the list select
"Add loggging".

3. The first option that you need to select is the Logging Profiles. Here we want to choose the
"Exceptions" profile and accept its default values. Click Next.

PostSharp 3.0 Documentation

49

4. The next page of the wizard gives you the opportunity to choose the logging backend that
you want to use. For this example select "System.Diagnostics.Trace" and click Next.

PostSharp 3.0 Documentation

50

5. The summary page gives you the opporunity to review the selections that you have made. If
you notice that the configuration is not what you wanted you can click the Previous button
and adjust your selections. If the configuration meets your needs click Next.

PostSharp 3.0 Documentation

51

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to
add the selected logging configuration to your codebase. It's at this point that PostSharp and
the logging pattern library will be downloaded from Nuget and added as references to your
codebase.

PostSharp 3.0 Documentation

52

7. Once the download, installation and configuration of PostSharp and the logging pattern
library has finished you can close the wizard and look at the changes that were made to your
codebase.

8. You'll notice that the code you added the logging to has changed slightly. PostSharp has
added a LogAttribute attribute to the method and configured it based on the selections you
made in the wizard. For this example you can see that the OnExceptionLevel was set to Error.
This accounts for logging when the method fails. Both OnSuccessLevel and OnEntryLevel
were set to None as they don't play any part in logging during failures.

[Log(OnExceptionLevel = LogLevel.Error, OnSuccessLevel = LogLevel.None, OnEntryLevel = LogLevel.None)]
public void DoStuff(int i, int x)
{

Console.WriteLine(i/x);
}

Note

This example has added a single attribute to one method. If you plan on adding this
logging to many different locations in your codebase you will want to read about using
attribute multicasting. See Adding Aspects Declaratively Using Attributes at page 114.

PostSharp 3.0 Documentation

53

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnExceptionLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnSuccessLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnEntryLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogLevel.htm

See Also

9. If you were to run this method from a console application and pass in a value of zero for the
second parameter it would generate a DivideByZeroException. The trace logging that you
added would output a log message plus the exception's stack trace to the console. Note that
the parameter values are automatically included in the log message.

10. For those of you interested in what is happening behind the scenes we can decompile the
method and observe what PostSharp has done to our codebase. You'll notice two significant
things when you look at the decompiled code. First, PostSharp added in a try...catch block
that wraps the entirety of the original methods contents. The second thing you'll notice is that
the catch block logs the exception and re-throws it. This ensures that your code execution
paths will remain unchanged after you've added the logging.

Now that you have logging added to the DoStuff method you are able to change the method's name
as well as add and remove parameters with the confidence that your log entries will be kept in sync
with each of those changes. In combination with the attribute multicasting (See the section Adding
Aspects Declaratively Using Attributes at page 114), adding logging to your codebase and maintaining
it becomes a very easy task.

Reference

LogAttribute
OnExceptionLevel
OnSuccessLevel
OnEntryLevel

PostSharp 3.0 Documentation

54

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnExceptionLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnSuccessLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Diagnostics_LogAttribute_OnEntryLevel.htm

Error

3.2. Working with the Threading Pattern
Library
The Threading Pattern Library helps building multithreaded applications with fewer lines of code
and fewer defects. The library implements locking models (thread unsafe, reader-writer synchronized,
actor), thread synchronization aspects (to background thread, to UI thread), and a deadlock detection
facility.

It provides the following features:

• Threading Models. A threading model is a design pattern that gives guarantees that
your code executes safely on a multithreaded computer. Three models are implemented:
Thread Exclusive (thread unsafe), Reader-Writer Synchronized, and Actor. See Working with
Threading Models at page 55 for details.

• Thread Dispatching. Custom attributes DispatchedAttribute and BackgroundAttribute cause
the execution of a method to be dispatched to the UI thread or to a background thread,
respectively. For details, read Dispatching a Method to the UI Thread at page 79 and
Dispatching a Method to Background at page 86.

• Deadlock Detection. Detects deadlocks at runtime and throws an exception instead of
allowing your application to freeze. For details, see DeadlockDetectionPolicy.

3.2.1. Working with Threading Models
A threading model is a design pattern that gives guarantees that your code executes safely on a
multithreaded computer. Threading models both define coding rules (for instance: all fields must
be private) and add new behaviors to existing code (for instance: acquiring a lock before method
execution). Coding rules are typically enforced at build time or at run time; violations result in build-
time errors or run-time exceptions. Threading models may also require the use of custom attributes
in source code, for instance to indicate that a method requires read access to the object.

Tip

We recommend to assign a threading model to every class whose instances can be shared
between different threads.

PostSharp 3.0 Documentation

55

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Diagnostics_LogLevel.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_DispatchedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_BackgroundAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_DeadlockDetectionPolicy.htm

Threading models raise the level of abstraction at which multithreading is addressed. Compared to
working directly with locks and other low-level threading primitives, using threading models has the
following benefits:

• Threading models are named solutions to a recurring problem. Threading models are
specific types of design patterns, and have the same benefits. When team members discuss
the multithreaded behavior of a class, they just need to know which threading model this
class uses. They don't need to know the very details of its implementation. Since the human
short-term memory seems to be limited to 5-9 elements, it is important to think in terms of
larger conceptual blocks whenever we can.

• Much of the code required to implement the threading model can be automatically
generated, which decreases the number of lines of code, and therefore the number of
defects. It also reduces development and maintenance costs.

• Your source code can be automatically verified against the selected threading model, both
at build time and at run time. This makes the discovery of defect much more deterministic.
Without verifications, threading defects usually show up randomly and provoke data
structure corruption instead of immediate exceptions. Run-time verification would be too
labour-intensive to implement without compiler support, so would be most likely ommitted.

PostSharp Threading Library provides an implementation for the following threading models:

Threading
Model

Aspect Type Description

Thread
Unsafe

ThreadUnsafeAttribute These objects may never be accessed concurrently by several
threads.

For details, see Ensuring Thread-Unsafe Objects are Not Shared
at page 57.

Reader-
Writer
Synchronized

ReaderWriterSynchronizedAttribute These objects that can be accessed concurrently by several
threads. Every object is synchronized by a lock (a single lock
can be shared by several objects). Public methods of this object
must specify which kind of access they require (read or write,
typically). Readers can run concurrently, but writers are
exclusive.

For details, see Using the Reader/Writer Synchronized Object
Model at page 64.

Actor Actor These objects communicate with their clients using an
asynchronous communication pattern. All accesses to the
object are queued and then processed in a single thread.
However, queuing is transparent to clients, which just call
standard void or async methods.

For details, see Using the Actor Threading Model at page 73.

PostSharp 3.0 Documentation

56

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ThreadUnsafeAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_Actor.htm

Optional section title

Marking an object as thread-unsafe

Add one or more sections with content

3.2.1.1. Ensuring Thread-Unsafe Objects are Not Shared

When you are dealing with multi-threaded code you will run into situations where some objects are
not safe for concurrent use by several threads. Although these objects should theoretically not be
accessed concurrently, it is very hard to proof that it never happens. And when it does happen, thread-
unsafe data structures get corrupted, and symptoms may appear much later. These issues are typically
very difficult to debug. So instead of relying on hope, it would be nice if the object threw an exception
whenever it is accessed simultaneously by several threads. This is why we have the thread-unsafe
threading model.

This topic contains the following sections.

• Marking an object as thread-unsafe at page 57
• Waiving verification at page 63
• Resolving build-time errors at page 63
• Adding verification to private and protected methods at page 63

To mark an object as thread-unsafe:

1. When you don't want multiple threads to access a single instance of a given class you will
want to configure InstanceLevelAspect thread safety. To do this, select "Apply threading
model" from the smart tag on the class.

PostSharp 3.0 Documentation

57

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm

2. There are three different threading options provided by PostSharp. To restrict concurrent
access you will choose the "Apply thread-unsafe threading model" option.

PostSharp 3.0 Documentation

58

3. At this point you are prompted to select the threading model policy that is needed by the
target class. For this example you have determined that you do not want to have multiple
threads concurrently accessing the same class instance. This is the "Instance" policy.

PostSharp 3.0 Documentation

59

4. You will be prompted with a summary of the changes that will be made based on the config-
uration you selected in the wizard.

PostSharp 3.0 Documentation

60

5. PostSharp will download the Threading Pattern Library and add it to your project if that hasn't
been done yet.

PostSharp 3.0 Documentation

61

6. Once the process has completed successfully you'll be presented with the final page of the
wizard.

7. You'll notice that only one change was made to your codebase. The [ThreadUnsafeAttribute]
attribute was added to the class you were targeting.

[ThreadUnsafe]
public class MyDictionary
{

Dictionary<string,string> dictionary = new Dictionary<string,string>();

public void Add(string key, string value)
{

this.dictionary.Add(key, value);
}

}

Now when your application executes no two threads will be able to access a single instance of the
MyDictionary class at the same time. If two threads attempt to do this, the second thread will receive
a ConcurrentAccessException. Without the exception, there would be a slight chance that internal
Dictionary would become corrupted, because this data structure is not thread safe.

PostSharp 3.0 Documentation

62

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ThreadUnsafeAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ConcurrentAccessException.htm

Waiving verification

Resolving build-time errors

Adding verification to private and protected methods

There may be situations where you don't need to verify thread safety on a specific method. Post-
Sharp offers you the opportunity to waive verfication on specific methods by adding the [Explicitly-
SynchronizedAttribute] attribute.

[ExplicitlySynchronized]
public void Add(string key, string value)
{

lock (this.dictionary)
{

this.dictionary.Add(key, value);
}

}

The compiler won't generate code for methods annotated with [ExplicitlySynchronizedAttribute].

The thread-unsafe threading model puts a number of constraints on source code. These constraints
allow PostSharp to generate high-performance runtime validation by adding verification code to
public and internal methods only. These constraints are the following:

1. All fields must be private or protected.

2. Unless the threading policy is static:

a. Static method cannot access fields.
b. Static method cannot invoke private methods.

If your code does not respect these rules, you will see compiler errors. We recommend you first try
to solve these errors by restructuring your code. If this is not possible, you can apply the [Explicitly-
SynchronizedAttribute] attribute on methods or fields.

With [ExplicitlySynchronizedAttribute], the compiler won't generate errors when it detects code that
it cannot guarantee to be correct. In other words, this attribute means that you, the developer, take
responsibility from the compiler.

By default, [ThreadUnsafeAttribute] only adds verification to public and internal methods. This is
enough if your code respects the rule set by the thread-unsafe threading model. However, if you work
around some rules using [ExplicitlySynchronizedAttribute], you may need to add verification to private
and protected methods. This can be done by adding the [VerifyCallingThreadAttribute] attribute to
methods that need to be verified.

PostSharp 3.0 Documentation

63

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ThreadUnsafeAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_VerifyCallingThreadAttribute.htm

See Also
Reference

InstanceLevelAspect
ThreadUnsafeAttribute
ExplicitlySynchronizedAttribute
VerifyCallingThreadAttribute

3.2.1.2. Using the Reader/Writer Synchronized Object Model

When a class instance is concurrently used by multiple threads, accesses must be synchronized to
prevent data races, which typically result in data inconsistencies and corruption of data structures.

Consider the following example of an Order class which stores an amount and a discount:

class Order
{

public void Set(int amount, int discount)
{

if (amount < discount)
throw new InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}

int Amount { get; private set; }
int Discount { get; private set; }

public int AmountAfterDiscount
{

get { return this.Amount - this.Discount; }
}

}

In this example, the Set method writes to the Amount and Discount members, while the
AmountAfterDiscount property reads these members. In a single-threaded program, the
AmountAfterDiscount property is guaranteed to be positive or zero. However, in a multi-threaded
program, the AmountAfterDiscount property could be evaluated in the middle of the Set operation,
and return an inconsistent result.

This topic contains the following sections.

• Problems of the lock keyword at page 65
• Reader-writer locks at page 65
• Making a class reader-writer synchronized at page 66
• Enabling and Disabling ReaderLock/WriterLock checks at page 69
• Raising synchronous events at page 69

PostSharp 3.0 Documentation

64

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ThreadUnsafeAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_VerifyCallingThreadAttribute.htm

Problems of the lock keyword

Reader-writer locks

• Synchronizing access to multiple instances
• Executing long-running write methods

The easiest way to synchronize accesses to a class in C# is to use the lock keyword. However, this
practice cannot be generalized for two reasons:

• The use of exclusive locks often results in high contention and therefore low performance
because many threads queue to access the same resource;

• Applications relying on exclusive locks are prone to deadlocks because of cyclic waiting
dependencies.

Reader-writer locks take advantage of the fact that most applications involve much fewer reads than
writes, and that concurrent reads are always safe. Reader-writer locks ensure that no other thread is
accessing the object when it is being written. Reader-writer locks are normally implemented by the .
NET classes ReaderWriterLock or ReaderWriterLockSlim. The following example shows how Reader-
WriterLockSlim would be used to control reads and writes in the Order class:

class Order
{

private ReaderWriterLockSlim cacheLock = new ReaderWriterLockSlim();

public void Set(decimal amount, decimal discount)
{

if (amount < discount)
{

throw new InvalidOperationException();
}

cacheLock.EnterWriteLock();
this.Amount = amount;
this.Discount = discount;
cacheLock.ExitWriteLock();

}

public decimal Amount { get; private set; }
public decimal Discount { get; private set; }

public decimal AmountAfterDiscount
{

get
{

cacheLock.EnterReadLock();
decimal result = this.Amount - this.Discount;
cacheLock.ExitReadLock();
return result;

}

PostSharp 3.0 Documentation

65

http://msdn2.microsoft.com/en-us/library/d1aawyz4
http://msdn2.microsoft.com/en-us/library/bb300132
http://msdn2.microsoft.com/en-us/library/bb300132
http://msdn2.microsoft.com/en-us/library/bb300132

Making a class reader-writer synchronized

}
}

However, working directly with the ReaderWriterLock and ReaderWriterLockSlim classes has
disadvantages:

• It is cumbersome because a lot of code is required.
• It is unreliable because it is too easy to forget to acquire the right type of lock, and these

errors are not detectable by the compiler or by unit tests.

So, not only the direct use of locks results in more lines of code, but it won’t reliably prevent non-
deterministic data structure corruptions.

PostSharp Threading Pattern Library has been designed to eliminate non-deterministic data
corruptions while reducing the size of thread synchronization code to the absolute minimum (but not
less).

The ReaderWriterSynchronizedAttribute aspect implements the threading model (or threading
pattern) based on the reader-writer lock, with the following principles:

At any time, the object can be open for reading or closed for reading.
Methods define their required access level using [ReaderLockAttribute] and [WriterLock-
Attribute] custom attributes (other access levels exist for advanced scenarios)
An error will be emitted at build-time or runtime, but deterministically, whenever an object
field is being accessed by a method that does not have the required access level on the
object.

There are two ways to add the reader-writer-synchronized pattern to your class:

1. using the user interface
2. manually

To apply ReaderWriterSynchronizedAttribute using the user interface:

1. Hover the mouse over the class name. This displays the smart tag dropdown.

PostSharp 3.0 Documentation

66

http://msdn2.microsoft.com/en-us/library/d1aawyz4
http://msdn2.microsoft.com/en-us/library/bb300132
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm

2. Click the smart tag dropdown and click "Apply threading model":

3. Select "Apply reader-writer-synchronized threading model" and click Next:

4. Click Next on the summary screen and the click on Finished to complete the process. The
ReaderWriterSynchronizedAttribute attribute is now applied to the class.

5. Once ReaderWriterSynchronizedAttribute is applied to the class, each method or property
which accesses member data must then be marked as a reader or a writer. Position the caret
on the name of the method or on the get or set keyword and choose "Acquire reader lock"
or "Acquire writer lock" from the smart tag dropdown.

PostSharp 3.0 Documentation

67

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm

To apply ReaderWriterSynchronizedAttribute to a class manually:

1. Add NuGet Package PostSharp.Patterns.Threading

2. Add “using PostSharp.Patterns.Threading”.

3. Add the custom attribute [ReaderWriterSynchronizedAttribute] to the class.

4. Add the custom attribute [ReaderLockAttribute] or [WriterLockAttribute] to the class.

The following code shows the Order class , synchronized with the reader-writer threading pattern:

[ReaderWriterSynchronized]
class Order
{

[WriterLock]
public void Set(decimal amount, decimal discount)
{

if (amount < discount)
throw new InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}

decimal Amount { get; private set; }
decimal Discount { get; private set; }

public decimal AmountAfterDiscount
{

[ReaderLock] get { return this.Amount - this.Discount; }
}

}

ReaderLockAttribute places a lock on the instance whenever the property or method is invoked. While
this lock is held, other threads can also invoke a property or method of that instance which reads,
but calls to properties or methods marked with WriterLockAttribute will be blocked until all reads are
complete.

Likewise, invoking properties or methods marked with WriterLockAttribute will lock the instance
causing reads to block until the write has completed and the write lock has been released.

Since ReaderWriterSynchronizedAttribute requires that all properties and methods which access
member data be marked with ReaderLockAttribute or WriterLockAttribute, ReaderWriter-
SynchronizedAttribute throws an exception when an accessor does not have one of these attributes.
This ensures that unsynchronized reads and writes are caught the instant they occur.

Note

Property getters or methods that read a single field are intrinsically thread-safe and don’t need
to be marked with a [ReaderLockAttribute] custom attribute.

PostSharp 3.0 Documentation

68

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm

Enabling and Disabling ReaderLock/WriterLock checks

Raising synchronous events

Runtime checks for ReaderLockAttribute and WriterLockAttribute attributes can be expensive and
therefore it’s recommended that these checks be disabled in the final release build. To accommodate
this, the ReaderWriterSynchronizedAttribute attribute contains a member called RuntimeVerification-
Enabled which is set in the constructor to turn verifications on or off. Setting this flag is best
accomplished by defining a pair of constant bool’s in a separate class which are set to true/false based
on the build.

This is demonstrated in the following example where a class called ConditionalConstants defines a
variable called IsDebug and sets it to true or false based on the type of build. The constant is then
assigned to RuntimeVerificationEnabled in ReaderWriterSynchronizedAttribute’s constructor:

static class ConditionalConstants
{
#if DEBUG

public static const bool IsDebug = true;
#else

public static const bool IsDebug = false;
#endif
}

[ReaderWriterSynchronized(RuntimeVerificationEnabled=ConditionalConstants.IsDebug)]
class Order
{

// Details skipped for brevity.
}

In some situations, a method with write access needs to allow other threads to read the object before
another write is performed on the object. The implementation of [I:System.Collections.Specialized.
INotifyCollectionChanged] gives a typical example of this situation. The CollectionChanged event
defined by this interface is typically raised from a write method but is consumed from the user
interface thread. The object cannot have changed between the moment the event is raised and it is
processed by the UI thread, because the event arguments contain data that relates to the current
state of the object. Using only WriterLockAttribute and ReaderLockAttribute would either result in
deadlocks or in inconsistencies, respectively.

The solution to this problem is to use the ObserverLockAttribute custom attribute, which allows read
access from other threads but prevents any other thread from acquiring a writer lock.

In the following example, OrderCollection is a collection of Order objects. In this example, the Add()
and Remove() methods are marked with the WriterLockAttribute attributes. Listeners can be notified
about these changes by subscribing to the CollectionChanged event which is exposed through the
implementation of [I:System.Collections.Specialized.INotifyCollectionChanged]

Since listeners can be on other threads (e.g. a UI thread), this event is invoked by the Add() and
Remove() methods via a method called OnCollectionChanged() which has been marked with the
ObserverLockAttribute attribute. This lock ensures that the listener (which may be in another thread

PostSharp 3.0 Documentation

69

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute_RuntimeVerificationEnabled.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute_RuntimeVerificationEnabled.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute_RuntimeVerificationEnabled.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ObserverLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ObserverLockAttribute.htm

Synchronizing access to multiple instances

space) can read the current state of the collection without the collection being modified by another
invocation of the Add() or Remove() operations from another thread.

[ReaderWriterSynchronized]
class OrderCollection : ICollection, INotifyCollectionChanged
{

ArrayList list = new ArrayList();

// Details skipped.

[ReaderLock]
public int Count
{

get
{

return list.Count;
}

}

[WriterLock]
public void Add(Order o)
{

list.Add(o);
NotifyCollectionChangedEventArgs changedArgs = new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Add, o);
OnCollectionChanged(changedArgs);

}

[WriterLock]
public void Remove(int index)
{

NotifyCollectionChangedEventArgs changedArgs = new NotifyCollectionChangedEventArgs(NotifyCollectionChangedAction.Remove, list[index]);
list.RemoveAt(index);
OnCollectionChanged(changedArgs);

}

[ObserverLock]
private void OnCollectionChanged(NotifyCollectionChangedEventArgs changedArgs)
{

CollectionChanged(this, changedArgs);
}

[ReaderLock]
public Order Get(int index)
{

return (Order)list[index];
}

public event NotifyCollectionChangedEventHandler CollectionChanged;
}

The previous example showed how synchronization can be handled for a single class instance.
In cases where synchronization is required for multiple instances (e.g. when an object is part of
a collection), the class requiring synchronization must also implement PostSharp’s IReaderWriter-

PostSharp 3.0 Documentation

70

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_IReaderWriterSynchronized.htm

Synchronized interface. IReaderWriterSynchronized returns an instance of PortableReaderWriterLock
which is used to manage access to resources.

To demonstrate this, we’ll begin by adding a collection of Line classes to the Order class, each of
which contains an amount which makes up the order. Since access to instances of the Line class are
to be synchronized, the Line class will be marked with ReaderWriterSynchronizedAttribute and will
also implement IReaderWriterSynchronized. We’ve also added a collection of Line objects and an
AddLine() method to the containing Order class which adds new Line objects to this collection. This
method is marked with the WriterLockAttribute attribute since it creates, and adds a Line object to
the collection.

[ReaderWriterSynchronized]
class Order
{

// Other details skipped for brevity.

//collection of objects to syncronize
List<Line> lines = new List<Line>();

[WriterLock]
public Order AddLine(decimal amount)
{

Line line = new Line(this, amount);
this.lines.Add(line);
this.Amount += amount;
return line;

}

[ReaderLock]
public Line GetLine(int index)
{

return lines[index];
}

public decimal Amount { [ReaderLock] get; private set; }

[ReaderWriterSynchronized]
public class Line : IReaderWriterSynchronized
{

decimal amount;
Order parent;
internal Line(Order parent, decimal amount)
{

this.Lock =PostSharp.Post.Cast<Order,IReaderWriterSynchronized>(parent).Lock;
this.amount = amount;
this.parent = parent;

}

public decimal Amount
{

[ReaderLock]
get { return this.amount; }

[WriterLock]
set
{

PostSharp 3.0 Documentation

71

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_IReaderWriterSynchronized.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_IReaderWriterSynchronized.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_PortableReaderWriterLock.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_IReaderWriterSynchronized.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm

Executing long-running write methods

decimal difference = value - this.amount;
this.amount += value;
this.parent.Amount += value;

}
}

public PortableReaderWriterLock Lock
{

get; private set;
}

}
}

Since write methods require exclusive access to the object, they should complete as quickly as
possible. However, this is not always possible. Some long-running write methods really do a lot of
write operations (or rely on slow external services) which make them inappropriate for the reader-
writer-synchronized model. However, many write methods are actually composed of a lot of read
operations but just a few write operations at the end. In this case, it is possible to use a combination
of the UpgradeableReaderLockAttribute and WriterLockAttribute attributes. The UpgradeableReader-
LockAttribute attribute ensures that no other thread than the current one will be able to acquire
a writer lock on the object, so it gives the guarantee that the object is not going to be modified
during the method’s execution. A method that holds an upgradeable reader lock can then invoke a
method with the WriterLockAttribute attributes custom attribute. Note that it is important that the
writer methods leave the object in a consistent state before exiting, because other threads will be
allowed to read the object.

The following example builds on that in the section where the Order class contains a collection of Line
objects which make up the order. In the example below, a new method called Recalculate() has been
added to Order which iterates through each Line in the collection, tallies up the amount from each,
and then stores the total in Amount.

Since the Recalculate method performs a series of reads followed by a write operation (to store the
total in Amount), it is marked with the UpgradeableReaderLockAttribute attribute which ensures that
all of the orders that it reads remain locked so that it calculates and writes out the correct total. In
addition to this, the set accessor of the Order’s Amount property as been marked with WriterLock-
Attribute:

[ReaderWriterSynchronized]class Order
{

// Other details skipped for brevity.

public decimal Amount
{

[ReaderLock] get;

[WriterLock]
private set;

}

PostSharp 3.0 Documentation

72

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_UpgradeableReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_UpgradeableReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_UpgradeableReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_UpgradeableReaderLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm

See Also

[UpgradeableReaderLock]
public void Recalculate()
{

decimal total = (decimal)0.0;
for (int i = 0; i < lines.Count; ++i)
{

total += lines[i].Amount;
}

this.Amount = total;
}

}

Reference

IReaderWriterSynchronized
PortableReaderWriterLock
ReaderWriterSynchronizedAttribute
WriterLockAttribute
UpgradeableReaderLockAttribute

3.2.1.3. Using the Actor Threading Model

Given the complexity of trying to coordinate accesses to an object from several threads, sometimes it
makes more sense to avoid multi threading altogether. The Actor model avoids the need for thread
safety on class instances by routing method calls from each instance to a single message queue which
is processed, in order, by a single thread.

Since the processing for each instance takes place in a single thread, multi-threading is avoided
altogether and the object is guaranteed to be free of data races. Calls are processed asynchronously
in the order in which they were added to the message queue. Because all calls to an actor are
asynchronous, it is recommended that the async/await feature of C# 5.0 be used.

Additionally to provide a race-free programming model, the Actor pattern has the benefit of
transparently distributing the computing load to all available CPUs without additional logic. Note that
PostSharp’s implementation does not assign a new thread to each actor instance but uses a thread
pool instead, so it is possible to have a very large number of actors with relatively low overhead.

This topic contains the following sections.

• A single-threaded example
• Applying the Actor model using the UI
• Applying the Actor manually
• Dealing with constraints of the Actor model

PostSharp 3.0 Documentation

73

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_IReaderWriterSynchronized.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_PortableReaderWriterLock.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ReaderWriterSynchronizedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_WriterLockAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_UpgradeableReaderLockAttribute.htm

A single-threaded example

Consider the following example of a Player class for a simple ping pong like game in which Players
draw random numbers. If the random number is within the predefined skill range for a given player
then the player signals that it’s the other player’s turn to draw a random number. This logic continues
until a player draws a random number that’s above their skill level, in which case the player signals
that the other player is the winner. Each player records the number of balls it successfully received.

Here is the single-threaded version of this game:

class Player
{

readonly string name;
readonly Random random = new Random();
int totalBallsReceived;
readonly double skills;

public Player(string name, double skills)
{

this.name = name;
this.skills = skills;

}

public Player Ping(Player peer)
{

if (random.NextDouble() <= this.skills)
{

this.totalBallsReceived++;
return peer.Ping(this);

}
else
{

return peer;
}

}
}

Note that accesses to the “random” and “totalBallsReceived” fields make the Ping method thread-
unsafe. If we want an actor to be simultaneously involved in several games, we would need to make
the object safe for concurrent accesses using locks. However, working directly with locks results in
source code that is larger, less readable, and less reliable.

A better solution in this situation is to avoid concurrency altogether using the Actor pattern and
asynchronous methods.

PostSharp 3.0 Documentation

74

Applying the Actor model using the UI

To apply the Actor threading model to your class with the UI:

1. Place the mouse cursor over your class name and select “Apply threading model…” from the
dropdown.

2. Select “Apply actor threading model” and click Next.

PostSharp 3.0 Documentation

75

3. Verify the actions on the Summary screen and click Next.

PostSharp 3.0 Documentation

76

Applying the Actor manually

4. Click Finish after the installation completes:

Your class will now derive from Actor and all dependencies will have been added to the
project.

To apply the Actor threading model manually:

1. Add the PostSharp.Patterns.Threading NuGet package to your project.

2. Derive your class from PostSharp.Patterns.Threading.Actor.

In the reworked example below, the Player class has been derived from the Actor class and the Ping
method has been changed into an asynchronous method:

class Player : Actor
{

readonly string name;
readonly Random random = new Random();
int totalBallsReceived;
readonly double skills;

public Player(string name, double skills)

PostSharp 3.0 Documentation

77

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_Actor.htm

Dealing with constraints of the Actor model

{
this.name = name;
this.skills = skills;

}

public async Task<Player> Ping(Player peer)
{

if (random.NextDouble() <= this.skills)
{

this.totalBallsReceived++;
return await peer.Ping(this);

}
else
{

return peer;
}

}
}

TODO: show of the code is used.

Behind the scenes, each invocation of Ping() is added to the message queue by the Actor class,
which then processes each call sequentially in the order it was added to the queue. This gives us the
guarantee that an instance of the Player class is never being accessed concurrently by two threads,
and eliminates the need to make the class thread-safe.

Per definition of the Actor model, all methods are executed asynchronously. Methods that have no
return value (void methods) can be executed asynchronously without syntactic changes. However,
methods that do have a return value need to be made asynchronous using the async keyword.

In some situations, the application of the async keyword and the corresponding dispatching of the
method may be unnecessary. For instance, a method that returns immutable information is always
thread-safe and does not need to be dispatched.

Using the Player class example from above, we may want to add a ToString() method which returns
the name of the player. In this situation we don’t really need this method to be dispatched since it’s
guaranteed that concurrency is guaranteed to will never be an issue.

To avoid dispatching this method, apply the ExplicitlySynchronizedAttribute attribute:

class Player : Actor
{

readonly string name;
.
.
.

[ExplicitlySynchronized]
public string ToString()

PostSharp 3.0 Documentation

78

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_Actor.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_ExplicitlySynchronizedAttribute.htm

Using BackgroundWorker

{
return this.name;

}
}

Applying this attribute explicitly tells PostSharp that we take responsibility for the synchronization of
this method.

3.2.2. Dispatching a Method to the UI Thread
When you are building rich client user interfaces you have to be vigilant not to lock up the user
interface while performing intensive background tasks.

This topic contains the following sections.

• Using BackgroundWorker at page 79
• Adding background processing at page 81
• Adding UI thread processing at page 85

One of the techniques available is to make use of the built in .NET BackgroundWorker object. This
allows you to remove background processing from the UI thread. As you can see in the example below
there are a lot of pieces that you need to make this work.

public partial class CustomerEdit : Form
{

private readonly BackgroundWorker _backgroundWorker;

public CustomerEdit()
{

InitializeComponent();
_backgroundWorker = new BackgroundWorker();
_backgroundWorker.DoWork += DoSave;
_backgroundWorker.RunWorkerCompleted += SaveCompleted;

}

private void SaveCompleted(object sender, RunWorkerCompletedEventArgs e)
{

lblStatus.Text = "Finished Saving";
}

private void btnSave_Click(object sender, EventArgs e)
{

_backgroundWorker.RunWorkerAsync();
}

private void DoSave(object sender, DoWorkEventArgs doWorkEventArgs)
{

PostSharp 3.0 Documentation

79

http://msdn2.microsoft.com/en-us/library/4852et58

var customerRepository = new CustomerRepository();
customerRepository.Save(BuildCustomerFromScreen());

}

private Customer BuildCustomerFromScreen()
{

return new Customer();
}

}

To properly manage and interact with a BackgroundWorker process you need to hook the DoWork and
RunWorkerCompleted events. You need to couple the code that should be run to the DoWorker event
handler. The code to update the UI needs to be coupled to the RunWorkerCompleted event handler
and, finally, you need to execute the BackgroundWorker object's RunWorkerAsync method to kick off
the whole process.

As you can see, there are a lot of moving pieces in a very simple BackgroundWorker example. Here's
how PostSharp simplifies this common coding scenario.

PostSharp 3.0 Documentation

80

http://msdn2.microsoft.com/en-us/library/4852et58
http://msdn2.microsoft.com/en-us/library/4852et58
http://msdn2.microsoft.com/en-us/library/4852et58

Adding background processing

To add background processing:

1. The first thing you need to understand is that you can write your code as if you had no
thoughts of having any background processing occuring.

public partial class CustomerEdit : Form
{

public CustomerEdit()
{

InitializeComponent();
}

private void SaveCompleted()
{

lblStatus.Text = "Finished Saving";
}

private void btnSave_Click(object sender, EventArgs e)
{

DoSave();
SaveCompleted();

}

private void DoSave()
{

var customerRepository = new CustomerRepository();
customerRepository.Save(BuildCustomerFromScreen());

}

private Customer BuildCustomerFromScreen()
{

return new Customer();
}

}

PostSharp 3.0 Documentation

81

2. Once you have written your code you will need to determine which piece of it should run
in the background and in the UI threads. In this example the btnSave_Click method should
execute in the background and the SaveCompleted method should execute in the UI thread.
First, you should add the background processing to the btnSave_Click method.

3. You will be prompted with a wizard to complete the process. Accept the first page.

PostSharp 3.0 Documentation

82

4. If you have not yet added background processing to your project, PostSharp will download
the Threading Pattern Library and add it for you.

PostSharp 3.0 Documentation

83

5. Click Finish to complete the process.

6. When you look at your code you will see that only one thing has changed. The method
you designated to run in the background is now decorated with the [BackgroundWorker]
attribute.

[BackgroundMethod]
private void btnSave_Click(object sender, EventArgs e)
{

DoSave();
SaveCompleted();

}

PostSharp 3.0 Documentation

84

http://msdn2.microsoft.com/en-us/library/4852et58

Adding UI thread processing

Once you've added background processing to the button click, you will need a way to have the
SaveCompleted method run on the UI thread. If you don't do this you will get an
InvalidOperationException because setting the lblStatus.Text property is a cross threading
operation.

Here's how you can fix this:

1. Your code has encapsulated the UI thread interaction in the SaveCompleted method. Open
the smart tag on that method and choose to "execute the method in the object thread". This
tells PostSharp to configure this method to execute in the thread that the class containing
the method is executing in.

2. After selecting the smart tag option you will be returned to your code and you'll notice that
the only change was the addition of the [DispatchedMethod] attribute to the SaveCompleted

method.

[DispatchedMethod]
private void SaveCompleted()
{

lblStatus.Text = "Finished Saving";
}

Now if you run your code you will no longer receive the InvalidOperationException and instead will
see the label on the UI update. All of the Save functionality will occur in a separate thread which
prevents the user interface from locking up while that is happening.

PostSharp 3.0 Documentation

85

See Also
Reference

BackgroundWorker

3.2.3. Dispatching a Method to Background
Long running processes will block the further execution of code while the system waits for them to
complete. When you are building applications it's common to push long running processes to the
background so that other processes can continue without waiting. Two common ways of doing this
are with asyncronous processing and the BackgroundWorker. Both require a lot of boiler plate code
to push execution to another thread.

PostSharp provides you with the ability to push execution of a method to a background thread
without having to worry about all of the boiler plate code.

To add [BackgroundMethod] attribute:

1. Find the method that you want to push to the background for execution.

public class CustomerRepository
{

public void DoStuff()
{

Console.WriteLine("Things are getting done");
}

}

2. Select "Execute method in the background" from the Smart Tag available under the method
name.

PostSharp 3.0 Documentation

86

http://msdn2.microsoft.com/en-us/library/4852et58
http://msdn2.microsoft.com/en-us/library/4852et58

3. A summary of the changes that will be made is presented to you.

PostSharp 3.0 Documentation

87

4. At this time, and if it is necessary, PostSharp will download the Threading Pattern Library and
add it to your project.

PostSharp 3.0 Documentation

88

See Also

5. Once the process has completed successfully you'll be presented with the final page of the
wizard.

6. You'll notice that only one change was made to your codebase. The [BackgroundMethod]

attribute was added to the class you were targeting. Now when this method executes in
your application it will occur in another thread and will allow for the calling code to continue
executing.

public class CustomerRepository
{

[BackgroundMethod]
public void DoStuff()
{

Console.WriteLine("Things are getting done");
}

}

Those simple steps are all that is required for you to declare that a method should be executed in a
background thread.

Reference

BackgroundWorker

PostSharp 3.0 Documentation

89

http://msdn2.microsoft.com/en-us/library/4852et58

See Also

3.2.4. Detecting Deadlocks at Runtime
The Threading Pattern Library contains a deadlock detection aspect. Instead of letting your application
freeze because of a deadlock, it will throw an exception with detailed information about which threads
and which objects are involved in the deadlock. This makes it possible to diagnose deadlock that
happens in production, which is otherwise usually very difficult.

To enable the deadlock detection algorithm, you need to add the DeadlockDetectionPolicy custom
attribute to each assembly of the solution.

See DeadlockDetectionPolicy for details.

3.3. Working with the Model Pattern Library
The Model Pattern Library provides the following features:

• INotifyPropertyChanged. The NotifyPropertyChangedAttribute aspect implements the
INotifyPropertyChanged interface and automatically raises the PropertyChanged event for
the relevant properties whenever an object is changed. For details, see Automatically
implementing INotifyPropertyChanged at page 90.

• Code Contracts. The namespace PostSharp.Patterns.Contracts contains custom attributes
such as RequiredAttribute, which can be applied to fields, properties or parameters, and
validates their value at runtime. See Validating Parameters, Fields and Properties at page 103
for details.

Reference

NotifyPropertyChangedAttribute
PostSharp.Patterns.Contracts

3.3.1. Automatically implementing
INotifyPropertyChanged
Binding objects to the UI is a large and tedious task. You must implement INotifyPropertyChanged
on every property that needs to be bound. You need to ensure that the underlying property setter
correctly raises events so that the View knows that changes have occurred. The larger your codebase,
the more work there is. You can partially elminate all of this repetitive code by pushing some of the
functionality to a base class that each Model class inherits from. It still doesn't eliminate all of the
repetition though.

PostSharp can completely eliminate all of that repetition for you. All you have to do is make use of the
Model Pattern Library's NotifyPropertyChangedAttribute aspect.

PostSharp 3.0 Documentation

90

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_DeadlockDetectionPolicy.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Threading_DeadlockDetectionPolicy.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://msdn2.microsoft.com/en-us/library/ms133023
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_RequiredAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

To add INotifyPropertyChanged aspect:

1. Let's add NotifyPropertyChangedAttribute to the CustomerForEditing class:

public class CustomerForEditing
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string FullName
{

get { return string.Format("{0} {1}", this.FirstName, this.LastName);}
}
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

}

2. Put the caret on the class name and expand the Smart Tag. From the list select "Implement
INotifyPropertyChanged".

PostSharp 3.0 Documentation

91

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

3. If you haven't previously added the Model Pattern Library to the current project, PostSharp
will inform you that it will be doing this as well as adding an attribute to the target class.

PostSharp 3.0 Documentation

92

4. PostSharp will download the Model Pattern Library and add the attribute.

PostSharp 3.0 Documentation

93

5. Once the download, installation and configuration of the Model Pattern Library and the
addition of the attribute has finished you can close the wizard and look at the changes that
were made to your codebase.

PostSharp 3.0 Documentation

94

See Also

6. You'll notice that the code you added NotifyPropertyChangedAttribute to has only been
slightly modified. PostSharp has added a NotifyPropertyChangedAttribute attribute to the
class. This class level attribute will add the implementation of NotifyPropertyChanged-
Attribute to the class as well as the plumbing code in each property that makes it work.

[NotifyPropertyChanged]
public class CustomerForEditing
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string FullName
{

get { return string.Format("{0} {1}", this.FirstName, this.LastName); }
}
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

}

Note

This example has added NotifyPropertyChangedAttribute to one class. If you need to
implement NotifyPropertyChangedAttribute to many different classes in your codebase
you will want to read about using aspect multicasting. See the section Adding Aspects
to Multiple Declarations at page 116.

By using the Model Pattern Library to add NotifyPropertyChangedAttribute to your Model classes you
are able to eliminate all of the repetitive boilerplate coding tasks and code from the codebase.

Reference

INotifyPropertyChanged
NotifyPropertyChangedAttribute

3.3.1.1. Customizing the NotifyPropertyChanged Aspect

Postsharp includes a number of attributes for customizing the Model Pattern’s behaviour and for
handling special dependencies.

This topic contains the following sections.

• Ignoring Changes to Properties at page 96
• Handling Virtual Calls, References, and Delegates in a Get Accessor at page 96
• Handling Local Variables at page 98
• Handling Dependencies on Pure Methods at page 99

PostSharp 3.0 Documentation

95

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

Ignoring Changes to Properties

Handling Virtual Calls, References, and Delegates in a Get Accessor

Use the IgnoreAutoChangeNotificationAttribute class attribute to prevent an OnPropertyChanged
event from being invoked when setting a property. For example, the CustomerModel class contains a
Country property amongst others:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }

public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }
public string Country { get; set;}

}

To prevent a property notification from being invoked when the Country’s value is set, simply place
the IgnoreAutoChangeNotificationAttribute attribute above the property:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

[IgnoreAutoChangeNotification]
public string Country { get; set;}

}

If a get accessor calls a virtual method from its class or a delegate, or references a property of another
object (without using canonical form this.field.Property), PostSharp will generate an error because
it cannot resolve such a dependency at build time. To suppress this error, you can add the [SafeFor-
DependencyAnalysisAttribute] custom attribute to the property accessor (or in any method used by
the property accessor). This custom attribute instructs PostSharp that the property accessor is “safe” –
in other words, it contains only dependencies in the canonical form this.field.Property.

For example, say CustomerModel contains a virtual method called ValidateCountry() which is used by
the get accessor of its Country property:

[NotifyPropertyChanged]
public class CustomerModel
{

PostSharp 3.0 Documentation

96

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_IgnoreAutoChangeNotificationAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_IgnoreAutoChangeNotificationAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm

// Details skipped.

protected virtual bool ValidateCountry(string s)
{

if (s!=null)
return true;

else
return false;

}

public string Country
{

get
{

if(this.ValidateCountry(value))
return value;

else
return null;

}
set;

}
}

In this situation the property relies on a virtual method which PostSharp cannot resolve at build time,
so the SafeForDependencyAnalysisAttribute attribute can be placed on the Country property suppress
this error:

[NotifyPropertyChanged]
public class CustomerModel
{

// Details skipped.

public virtual bool Test(string s)
{

if (s!=null)
return true;

else
return false;

}

[SafeForDependencyAnalysisAttribute]
public string Country
{

get
{

if(this.test(value) == true)
return value;

else
return null;

}
set;

}
}

PostSharp 3.0 Documentation

97

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm

Handling Local Variables

Note

By using SafeForDependencyAnalysisAttribute, you are taking the responsibility that your code
only has dependencies that are given either in the canonical form of this.field.Property either
explicitly using the On construct (see the next section). If you are using this custom attribute but
have non-canonical dependencies, some property changes may not be detected in which case
no notification will be generated.

Properties may depend on a property of another object, and sometimes this object must be stored
in a local variable. PostSharp is not able to analyze chains of dependencies in properties that are
dependent on a property of a local variable.

For example, consider the following version of CustomerModel which contains properties for primary
and secondary contact phone numbers, each of which is of type Contact, as well a string property
called ValidPhoneNumber which attempts to return a non-null phone number:

public class Contact
{

public string Phone {get; set;}
}

[NotifyPropertyChanged]
public class CustomerModel
{

public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

public string ValidPhoneNumber
{

Contact contact = null;
if(PrimaryContact != null)

contact = PrimaryContact;
else

contact = SecondaryContact;

if(contact != null)
return contact.Phone;

else
return null;

}
}

In this situation the local variable contact cannot be analyzed, so the dependency must be explicitly
specified using the Depends On method:

[NotifyPropertyChanged]
public class CustomerModel
{

public Contact PrimaryContact{get; set;}

PostSharp 3.0 Documentation

98

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/Overload_PostSharp_Patterns_Model_Depends_On.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/Overload_PostSharp_Patterns_Model_Depends_On.htm

Handling Dependencies on Pure Methods

public Contact SecondaryContact{get; set;}

[SafeForDependencyAnalysis]
public string ValidPhoneNumber
{

Depends.On(this.PrimaryContact.Phone, this.SecondaryContact.Phone);
Contact contact = null;
if(PrimaryContact != null)

contact = PrimaryContact;
else

contact = SecondaryContact;

if(contact != null)
return contact.Phone;

else
return null;

}
}

Note

The SafeForDependencyAnalysisAttribute attribute is still required in order to suppress the error
about the dependency on a local variable.

Often times an object will depend on a method which is solely dependant on its input parameters to
produce an output (e.g. a static method). Consider the following variation to CustomerModel where the
ValidPhoneNumber property logic has been moved into a static method called GetValidPhoneNumber()
which exists in a separate helper class called ContactHelper:

public class ContactHelper
{

[Pure]
public static string GetValidPhoneNumber(string firstPhoneNumber, string secondPhoneNumber)
{

if(firstPhoneNumber != null)
return firstPhoneNumber;

else if (secondPhoneNumber != null)
return secondPhoneNumber;

else
return null;

}
}

[NotifyPropertyChanged]
public class CustomerModel
{

public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

PostSharp 3.0 Documentation

99

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm

See Also

public string ValidPhoneNumber
{

get {
return ContactHelper.GetValidPhoneNumber(this.PrimaryContact.Phone, this.SecondaryContact.Phone);

}
}

}

Since GetValidPhoneNumber() is a standalone method of another class, it is not analyzed. Therefore
the PureAttribute attribute needs to be applied to this method to acknowledge this dependency.

Reference

PureAttribute
IgnoreAutoChangeNotificationAttribute
SafeForDependencyAnalysisAttribute
Depends On
Depends

3.3.1.2. Working with Properties that Depend on Other Objects

It’s very common for the properties of one class to be dependent on the properties of another class.
For example, a view-model layer will often contain a reference to a model object, and public properties
which are in turn forwarded to the underlying properties of this referenced object. In this scenario
the view-model component’s properties have a dependency on the referenced model’s properties.
Subsequently the referenced model may also have properties which depend on the properties of other
objects.

PostSharp’s Model Pattern Library easily handles transitive dependencies. Simply add the Notify-
PropertyChangedAttribute class attribute to each class in the dependency chain. This will ensure that
property change notifications are propagated up and down the dependency chain. The Model Pattern
Library takes care of the rest and will even handle circular dependencies.

PostSharp 3.0 Documentation

100

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_PureAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_PureAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_IgnoreAutoChangeNotificationAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_SafeForDependencyAnalysisAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/Overload_PostSharp_Patterns_Model_Depends_On.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_Depends.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

In the following set of steps, the CustomerModel class is used as a dependency of a CustomerViewModel
class containing FirstName and LastName properties both of which directly map to properties of the
CustomerModel class, and a public read only property called FullName, which is calculated based on the
value of the underlying customer’s FirstName and LastName properties.

1. Add the CustomerModel class to your project ensuring that the NotifyPropertyChanged-
Attribute attribute is included:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

}

2. Setup a view-model class which contains a reference to a CustomerModel object, add
properties to get/set the name related fields. References to properties of the
CustomersForEditing object should be in the form of this.field.Property (or
this.Property.Property), otherwise PostSharp won’t be able to discover the dependencies
from your source code.

class CustomerViewModel
{

Customer model;

public CustomerViewModel(Customer m)
{

this.model = m;
}

public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}

public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

}

PostSharp 3.0 Documentation

101

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

3. Add the FullName property and use the same rule as described in the previous step to
reference dependent properties:

class CustomerViewModel
{

Customer model;

public CustomerViewModel(Customer m)
{

this.model = m;
}
public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

public string FullName { get {
return string.Format("{0} {1}", this.model.FirstName, this.model.LastName);

} }

}

4. Add the NotifyPropertyChangedAttribute attribute to the class:

[NotifyPropertyChanged]
class CustomerViewModel
{

Customer model;

public CustomerViewModel(Customer m)
{

this.model = m;
}

public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

public string FullName { get {
return string.Format("{0} {1}", this.model.FirstName, this.model.LastName);

} }

}

You now have a view-model class which can be used to bridge a view (e.g. an application’s user
interface) with the underlying data, and calls to get/set will be propagated across the chain of
dependencies.

Note

Read the article Customizing the NotifyPropertyChanged Aspect at page 95 to learn about
referencing properties without using the this.field.Property form.

PostSharp 3.0 Documentation

102

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

See Also

Contracts

Reference

NotifyPropertyChangedAttribute

3.3.2. Validating Parameters, Fields and Properties
This topic contains the following sections.

• Contracts at page 103
• Custom Contracts at page 108
• Contract Inheritance at page 111
• See Also at page 0

Throwing exceptions upon detecting a bad or unexpected value is good programming practice.
However, writing the same checks over and over in different areas of the code base is tedious, error
prone, and difficult to maintain.

Consider the following method which checks if a valid string has been passed in:

public class CustomerModel
{
public void SetFullName(string firstName, string lastName)
{

if(firstName == null)
throw NullReferenceException();

if(lastName == null)
throw NullReferenceException();

FullName = firstName + lastName;
}
}

In this example, checks have been added to ensure that both parameters contain a valid string. A
better solution is to place the logic which performs this check into its own reusable class, especially
such boilerplate logic is involved, and then reuse/invoke this class whenever the check needs to be
performed.

PostSharp’s Contract attributes do just that by moving such checks out of code and into parameter
attributes. For example, PostSharp’s RequiredAttribute contract could be used to simplify the example
as follows:

public class CustomerModel
{

PostSharp 3.0 Documentation

103

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_RequiredAttribute.htm

public void SetFullName([Required] string firstName, [Required] string lastName)
{

this.FullName = firstName + lastName;
}

}

In this example the RequiredAttribute attribute performs the check for null, thus eliminating the need
to write the boiler plate code for the check inline with other code.

A contract can also be used in a property as shown in the following example:

public class CustomerModel
{

[Required]
public FirstName
{

get;
set;

}
}

Using a contract in a property ensures that the value being passed into set is validated before the
logic (if any) for set is executed.

Similarly, a contract can be used directly on a field which will validate the value being assigned to the
field:

public class CustomerModel
{

[Required]
private string mFirstName = “Not filled in yet”;

public void SetFirstName(string firstName)
{

mFirstName = firstName;
}

}

In this example, firstName will be validated by the Required contract before being assigned to
mFirstName. Placing a contract on a field provides the added benefit of validating the field regardless
of where it’s set from.

Note that PostSharp also includes a number of built-in contracts which range from checks for null
values to testing for valid phone numbers. You can also develop your own contracts with custom logic
for your own types as described below.

There are two ways to add contracts:

• from the UI
• manually

PostSharp 3.0 Documentation

104

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_RequiredAttribute.htm

This section contains the following subsections.

• Adding Contracts from the UI at page 105
• Adding Contracts Manually at page 108

Adding Contracts from the UI

PostSharp’s Visual Studio integration provides a smart tag popup which can be used to select and
apply a contract to a parameter, field, or property.

To add contract using the UI:

1. Click on the parameter, field, or property for which the contract is to be applied. While
hovering the mouse over this item, a smart tag dropdown will appear:

2. Click on the smart tag dropdown to reveal the contracts available:

PostSharp 3.0 Documentation

105

3. Select a contract from the list or select Add another aspect to display the aspect selection
dialog:

4. Select a contract and click Next.

PostSharp 3.0 Documentation

106

5. Confirm the addition of the contract and click Next:

PostSharp 3.0 Documentation

107

Custom Contracts

6. Click Finish when the dialog indicates that the operation completed:

The aspect has now been added in code:

Adding Contracts Manually

To add contract manually:

1. Add the assembly: PostSharp.Patterns.Model to your project.

2. Add the namespace: PostSharp.Patterns.Contracts.

3. Add the attribute before the parameter name for example:

public void SetFullName([Required] string firstName, [Required] string lastName)

Given the benefits that contracts provide over manually checking values and throwing exceptions in
code, you will likely want to implement your own contracts to perform your own custom checks and
handle your own custom types.

The following steps show how to implement a contract which throws an exception if a numeric
parameter is zero:

PostSharp 3.0 Documentation

108

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Model.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm

To implement a contract throwing an exception if a numeric parameter is zero:

1. Use the following namespaces: PostSharp.Aspects and PostSharp.Reflection.

2. Derive a class from LocationContractAttribute and set the ErrorMessage property:

public class NonZeroAttribute : LocationContractAttribute
{

public NonZeroAttribute()
: base()

{
ErrorMessage = "The {2} must have a non-zero value";

}
}

Note

The ErrorMessage property can be set to a formatting string that contains placeholders.
See the documentation for the ErrorMessage property for more information.

PostSharp 3.0 Documentation

109

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Reflection.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_LocationContractAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Contracts_LocationContractAttribute_ErrorMessage.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Contracts_LocationContractAttribute_ErrorMessage.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Contracts_LocationContractAttribute_ErrorMessage.htm

3. Implement the ILocationValidationAspect interface in the new contract class which exposes
the ValidateValue(T, String, LocationKind) method. Note that this interface must be
implemented for each type that is to be handled by the contract. In this example, the
contract will handle both int and uint, so the interface is implemented for both integer
types. If additional integer types were to be handled by this class (e.g. long), then additional
implementations of ILocationValidationAspect would have to be added:

public class NonZeroAttribute : LocationContractAttribute, ILocationValidationAspect<int>, ILocationValidationAspect<uint>
{

public NonZeroAttribute()
: base()

{
ErrorMessage = "Expected some type";

}

public Exception ValidateValue(int value, string name, LocationKind locationKind)
{

if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);

else
return null;

}

public Exception ValidateValue(uint value, string name, LocationKind locationKind)
{

if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);

else
return null;

}
};

ValidateValue(T, String, LocationKind) takes in the value to test, the name of the parameter,
property or field, and the usage (i.e. whether it’s a parameter, property, or field). The method
must return an exception if a check fails, or null or if no exception is to be raised.

With the contract now created it can be used. For example, the following methods which calculate the
modulus between two numbers, can use the contract defined above to ensure that neither of their
input parameters are zero:

bool Mod([NonZero] int number, [NonZero] int dividend)
{

return ((number % dividend) == 0);
}

bool Mod([NonZero] uint number, [NonZero] uint dividend)
{

return ((number % dividend) == 0);
}

PostSharp 3.0 Documentation

110

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationValidationAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_ILocationValidationAspect_1_ValidateValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationValidationAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_ILocationValidationAspect_1_ValidateValue.htm

Contract Inheritance

See Also

PostSharp ensures that any contracts which have been applied to an abstract, virtual, or interface
method are inherited along with that method in derived classes, all without the need to re-specify the
contract in the derived methods. This is shown in the following example:

public interface ICustomerModel
{

void SetFullName([Required] string firstName, [Required] string lastName);
}

public class CustomerModel : ICustomerModel
{

public void SetFullName(string firstName, string lastName)
{

this.FullName = firstName + “ “ + lastName;
}

}

Here ICustomerModel.SetFullName method specifies that the firstName and lastName parameters
are required using the RequiredAttribute attribute. Since the CustomerModel.SetFullName method
implements this method, these attributes will also be applied to its parameters.

Note

If the derived class exists in a separate assembly, that assembly must be processed by PostSharp
and must reference PostSharp and PostSharp Model pattern assembly.

Reference

RequiredAttribute
PostSharp.Patterns.Model
PostSharp.Patterns.Contracts
PostSharp.Aspects
PostSharp.Reflection
LocationContractAttribute
ErrorMessage
ILocationValidationAspect
ValidateValue(T, String, LocationKind)

PostSharp 3.0 Documentation

111

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_RequiredAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_RequiredAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Model.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Reflection.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Contracts_LocationContractAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Patterns_Contracts_LocationContractAttribute_ErrorMessage.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationValidationAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_ILocationValidationAspect_1_ValidateValue.htm

PostSharp 3.0 Documentation

112

Applying Aspects to Multiple Elements of Code Declaratively

Applying Aspects to Multiple Elements of Code Imperatively

CHAPTER 4

Adding Aspects to Code

An aspect has no effect until it is applied to some element of code. PostSharp provides multiple ways
to add aspects to your code.

In many situations, you want to apply the same aspect to many elements of code. For instance, you
may need to add tracing or performance monitoring to all public methods of a namespace. Since
there may be hundreds of affected methods, you don't want to add a custom attribute to all of them.

Thanks to an extension of semantics of custom attributes named “multicast custom attribute”
(MulticastAttribute), it is easy to apply an aspect to multiple elements of code using a single line of
code.

For details, see Adding Aspects Declaratively Using Attributes at page 114 and Understanding Aspect
Inheritance at page 133.

If declarative features of MulticastAttribute are not sufficient for your case, you can select elements of
code imperatively. For instance, you can develop complex filters based on System.Reflection or read
information from an XML file.

There are two ways you can implement imperative selection aspect targets:

Filtering Out Using CompileTimeValidate

To filter out elements of codes that have been selected by MulticastAttribute, you can implement the
method CompileTimeValidate(Object) of your aspect and silently return false if the candidate target
is not appropriate. .

For instance, the following aspect will apply only on security-critical methods.

using System;
using System.Reflection;
using PostSharp.Aspects;

namespace Samples2
{

[Serializable]

PostSharp 3.0 Documentation

113

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://msdn2.microsoft.com/en-us/library/136wx94f
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm

public sealed class TraceSecurityCriticalAttribute : OnMethodBoundaryAspect
{

// Select only security-critical methods.
public override bool CompileTimeValidate(MethodBase method)
{

return method.IsSecurityCritical;
}

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("On Entry");
}

}
}

See Validating Aspect Usage at page 180 for details.

Adding Aspect Instances Using IAspectProvider

If you have to implement more complex rules to select the target of aspects, you can create another
aspect that will do nothing else than adding aspect instances to your code. This aspect must
implement the interface IAspectProvider and will typically derive from AssemblyLevelAspect or Type-
LevelAspect.

Tip

Use ReflectionSearch to perform complex queries over System.Reflection.

4.1. Adding Aspects Declaratively Using
Attributes
In .NET, you normally need to write one line of code for any application of a target attribute. If a
custom attribute applies to all types of a namespace, you have to manually add the custom attribute
to every single type.

By contrast, multicast custom attributes allow you to apply a custom attribute on multiple declarations
from a single line of code by using wildcard or regular expressions, or by filtering on some attributes.
It makes it easy to apply an aspect to, say, all public static methods of a namespace, with a single line
of code.

Multicast attributes can be inherited: you can put it on an interface and ask it to apply to all classes
implementing this interface. Attribute inheritance also works for classes, virtual or interface methods,
and parameters of virtual or interface methods.

Custom attributes supporting multicasting needs to be derived from MulticastAttribute. All PostSharp
aspects and constraints are derived from this class.

PostSharp 3.0 Documentation

114

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_ReflectionSearch.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm

See Also

Note

Multicasting of custom attribute is a feature of PostSharp. If you do not transform your assembly
using PostSharp, multicast attributes will behave as plain old custom attributes.

Note

This documentation often refers to this as “aspect” multicasting and inheritance. This is not totally
accurate. Although this feature has been developed to support aspects, you can use it for your
own custom attributes, even if they are not aspects. To use multicasting and inheritance for
custom attributes that are not aspects, simply derive the attribute class from MulticastAttribute
instead of Attribute.

Attribute multicasting supports the following scenarios:

• Adding Aspects to a Single Declaration at page 115
• Adding Aspects to Multiple Declarations at page 116
• Adding Aspects to Derived Classes and Methods at page 119
• Overriding and Removing Aspect Instances at page 125
• Reflecting Aspect Instances at Runtime at page 129

For a conceptual overview of this feature, see:.

• Understanding Attribute Multicasting at page 130
• Understanding Aspect Inheritance at page 133

Reference

MulticastAttribute
MulticastAttributeUsageAttribute
IAspectProvider

4.1.1. Adding Aspects to a Single Declaration
Aspects in PostSharp are plain custom attributes. You can apply them to any element of code as
usually.

In the following example, the Trace aspect is applied to two methods.

public class CustomerService
{

[Trace]
public Custom GetCustomer(int customerId)
{

// Details skipped.

PostSharp 3.0 Documentation

115

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://msdn2.microsoft.com/en-us/library/e8kc3626
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

Applying to all members of a class

Applying an aspect to all types in a namespace

}

[Trace]
public void MergeCustomers(Customer customer1, Customer customer2);
{

// Details skipped.
}

}

4.1.2. Adding Aspects to Multiple Declarations
Once have written an aspect we have to apply it to the application code so that it will be used. There
are a number of ways to do this so let's take a look at one of them: custom attribute multicasting.
Other ways include XML Multicasting (see the section Adding Aspects Using XML at page 136) and
dynamic aspect providers (see more in the section Adding Aspects Programmatically using IAspect-
Provider at page 137).

This topic contains the following sections.

• Applying to all members of a class at page 116
• Applying an aspect to all types in a namespace at page 116
• Excluding an aspect from some members at page 117
• Filtering by class visibility at page 118
• Filtering by method modifiers at page 118
• Programmatic filtering at page 118

When we are trying to apply a method level aspect we can place an attribute to each of the methods.

[OurLoggingAspect]
public class CustomerServices

As our codebase grows this approach becomes tedious. We need to remember to add the attribute to
all of the methods on the class. If you have hundreds of classes, you may have thousands of methods
you need to manually add the aspect attribute to. It's an unsustainable proposition. Thankfully, there is
a way to make this easier. Instead of applying your aspect on each method you can add that attribute
to the class and PostSharp will ensure that the aspect is applied to all of the methods on that class.

Even though we don't have to apply an aspect to all methods in all classes in our application, adding
the aspect attribute to every class could still be an overwhelming task. If we want to apply our aspect
in a broad stroke we can make use of PostSharp's MulticastAttribute.

PostSharp 3.0 Documentation

116

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm

Excluding an aspect from some members

The MulticastAttribute is a special attribute that will apply other attributes throughout your codebase.
Here's how we would use it.

1. Open the AssemblyInfo.cs, or create a new file GlobalAspects.cs if you prefer to keep things
separate (the name of this file does not matter).

2. Add an [assembly:] attribute that references the aspect you want applied.

3. Add the AttributeTargetTypes property to the aspects's constructor and define the
namespace that you would like the aspect applied to.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*")]

This one line of code is the equivalent of adding the aspect attribute to every class in the desired
namespace.

Note

When setting the AttributeTargetTypes you can use wildcards to indicate that all sub-namespaces
should have the aspect applied to them. It is also possible to indicate the targets of the aspect
using regex. Add "regex:" as a prefix to the pattern you wish to use for matching.

Multicasting an attribute can apply the aspect with a very broad brush. It is possible to use Attribute-
Exclude to restrict where the aspect is attached.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributePriority = 1)]
[assembly: OurLoggingAsepct(AttributeTargetMembers="Dispose", AttributeExclude = true, AttributePriority = 2)]

In the example above, the first multicast line indicates that the OurLoggingAspect should be attached
to all methods in the Controllers namespace. The second multicast line indicates that the
OurLoggingAspect should not be applied to any method named Dispose.

Note

Notice the AttributePriority property that is set in both of the multicast lines. Since there is no
guarantee that the compiler will apply the attributes in the order you have specified in the code,
it is necessary to declare an order to ensure processing is completed as desired.

In this case, the OurLoggingAspect will be applied to all methods in the Controllers namespace
first. After that is completed, the second multicast of OurLoggingAspect is performed which then
excludes the aspect from methods named Dispose.

PostSharp 3.0 Documentation

117

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeExclude.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeExclude.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributePriority.htm

Filtering by class visibility

Filtering by method modifiers

Programmatic filtering

See Overriding and Removing Aspect Instances at page 125 for more details about exclusing and
overriding aspects.

Now that you've been able to apply our aspect to all classes in a namespace and its sub-namespaces,
you may be faced with the need to restrict that broad stroke. For example, you may want to apply
your aspect only to classes defined as being public.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Set the AttributeTargetTypeAttributes value to Public.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*",
AttributeTargetTypeAttributes = MulticastAttributes.Public)]

By combining AttributeTargetTypeAttributes values you are able to create many combinations that
are appropriate for your needs.

Note

When specifying attributes of target members or types, do not forget to provide all categories of
flags, not only the category on which you want to put a restriction.

Filtering at a class level may not be granular enough for your needs. Aspects can be attached at the
method level and you will want to control filtering on these aspects as well. Let's look at an example
of how to apply aspects only to methods marked as virtual.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Set the AttributeTargetTypeAttributes value to VirtualVirtual.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributeTargetMemberAttributes = MulticastAttributes.Virtual)]

Using this technique you can apply a method level aspect, or stop it from being applied, based on the
existence or non-existence of things like the static, abstract, and virtual keywords.

There are situations where you will want to filter in a way that isn't based on class or method
declarations. You may want to apply an aspect only if a class inherits from a specific class or
implements a certain interface. There needs to be a way for you to accomplish this.

PostSharp 3.0 Documentation

118

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm

See Also

Applying aspects to derived types

The easiest way is to override the CompileTimeValidate(Object) method of your aspect class, where
you can perform your custom filtering. This is the opt-out approach. Have the CompileTime-
Validate(Object) method return false without emitting any error, and the candidate target will be
ignored. See the section [usage-validation] for details.

The second approach is opt-in. See the section Adding Aspects Programmatically using IAspect-
Provider at page 137 for details.

Reference

MulticastAttribute
AttributeTargetTypes
AttributeExclude
AttributePriority
AttributeTargetTypeAttributes
CompileTimeValidate(Object)
PersistMetaData

4.1.3. Adding Aspects to Derived Classes and Methods
By default, aspects apply to the class or class member which your attribute has been applied to.
However, PostSharp provides the ability to specify aspect inheritance which can allow your attributes
to be inherited in derived classes. This feature, named aspect inheritance can be specified on types,
methods, and parameters, but not on properties or events.

Note

PostSharp Professional or higher edition is required for aspect inheritance.

This topic contains the following sections.

• Applying aspects to derived types at page 119
• Setting inheritance on a per-usage basis at page 121
• Applying aspects to overridden methods at page 121
• Applying aspects to new methods of derived types at page 124

One way to implement aspect inheritance is to add a MulticastAttributeUsageAttribute custom
attribute to your aspect class. Aspects that apply to types are typically derived from TypeLevelAspect
or InstanceLevelAspect.

PostSharp 3.0 Documentation

119

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeExclude.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributePriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_PersistMetaData.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm

The benefit of this approach is that the aspect will be automatically applied to all derived classes,
eliminating the need to manually setup attributes in the derived classes. Moreover, this logic lives in
one place.

The following steps describe how to enable aspect inheritance on existing aspect, derived from Type-
LevelAspect, which applies a DataContractAttribute attribute to the base and all derived classes, and a
DataMemberAttribute attribute to all properties of the base class and those of derived classes:

How to enable aspect inheritance on existing aspect:

1. Create a TypeLevelAspect which implements IAspectProvider. In this example we start with
the AutoDataContractAttribute class which was introduced in the section Example: Automat-
ically Adding DataContract and DataMember Attributes at page 247

2. Decorate AutoDataContractAttribute with the MulticastAttribute, and set the Inheritance to
Strict. Note that MulticastInheritance.Strict and MulticastInheritance.Multicast have
the same effect when applied to type-level aspects.

[MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

3. Decorate your base class with AutoDataContractAttribute. The following snippet shows a
base customer class and a derived customer class:

[AutoDataContractAttribute]
class Document
{

public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

}

class MultiPageArticle : Document
{

public List<ArticlePage> Pages { get; set; }
}

When the attribute is applied to the base class, the DataContractAttribute and DataMemberAttribute
attributes will be applied at compile time to both classes. If other derived classes were added, then
these would be decorated automatically as well.

PostSharp 3.0 Documentation

120

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_Inheritance.htm
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795

Setting inheritance on a per-usage basis

Applying aspects to overridden methods

Specifying targets and attribute inheritance can also be done on a per-usage basis rather that
hardcoding it into the custom attribute. In the following snippet, we’ve removed the Multicast-
AttributeUsageAttribute attribute from AutoDataContractAttribute:

[

// MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

Now the inheritance mode can be specified directly on the AutoDataContractAttribute instance by
setting the AttributeInheritance property as shown here:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// Details skipped.
}

The following example shows a custom attribute which when applied to a class, writes a message to
the console window whenever a method enters and exits:

[Serializable]
public sealed class TraceMethodAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Entering {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

public override void OnExit(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Leaving {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

}

Specifying inheritance is simply a matter of adding the MulticastAttributeUsageAttribute attribute and
specifying the inheritance type, or to set the AttributeInheritance property on the custom attribute
usage.

PostSharp 3.0 Documentation

121

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeInheritance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeInheritance.htm

In the snippet below, we have added the TraceMethod aspect to a virtual method and used the
AttributeInheritance property to require the aspect to be automatically applied to all overriding
methods:

class Document
{

// Details skipped.

// This method will be traced.
[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

In this example, TraceMethodAttribute will output entry and exit messages for Document.RenderHtml
method and MultiPageArcticle.RenderHtml method as shown here:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

Note

Aspect inheritance works with virtual, abstract and interface methods and their parameters.

PostSharp 3.0 Documentation

122

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeInheritance.htm

We would get the similar result by adding the TraceMethod attribute to the Document class. Indeed, by
virtue of attribute multicasting (see section Adding Aspects to Multiple Declarations at page 116 for
more details), adding a method-level attribute to a class implicitly adds it to all method of this class.

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will NOT be traced.
public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

However, by adding the TraceMethod aspect to all methods of the Document type, we added it to
property getters and setters, influencing the output:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Entering Document.get_Title
Leaving Document.get_Title
Entering Document.get_Author

PostSharp 3.0 Documentation

123

Applying aspects to new methods of derived types

Leaving Document.get_Author
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

In the previous section the TraceMethod attribute used Strict inheritance which means that if the base
class is decorated with the attribute, it will only be applied to methods which are declared in the base
class and overridden in the derived class.

By changing the inheritance mode to Multicast, we specify that the aspect should be also be applied
to new methods of the derived class, i.e. not only methods that are overridden from the base class.

In the following snippet we’ve changed inheritance from Strict to Multicast:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Multicast)]
class Document
{

// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will ALSO be traced.
public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will ALSO be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

PostSharp 3.0 Documentation

124

See Also

Understanding the Multicasting Algorithm

}

}

With Strict inheritance in use, TraceMethodAttribute applied to Document was not applied to the
RenderHtmlPage method and the Pages property. In other words, as the name suggests, Strict
inheritance is strictly applying the attribute on base members and any derived members which
are inherited. However, with Multicast inheritance, the aspect is also applied to the RenderHtmlPage
method and the Pages property.

Strict inheritance evaluates multicasting and then inheritance, but Multicast inheritance evaluates
inheritance and then multicasting.

Reference

MulticastAttributeUsageAttribute
TypeLevelAspect
InstanceLevelAspect
DataContractAttribute
DataMemberAttribute
IAspectProvider
MulticastAttribute
Inheritance

4.1.4. Overriding and Removing Aspect Instances
Having multiple instances of the same aspect on the same element of code is sometimes a desired
behavior. With multicasting custom attributes (MulticastAttribute), it is easy to end up with that
situation. Indeed, many multicasting paths can lead to the same target.

However, most of the time, a different behavior is preferred. We could define a method-level aspect
on the type (this aspect would apply to all methods) and override (or even exclude) the aspect on a
specific method.

The multicasting engine has both the ability to apply multiple aspect instances on the same target,
and the ability to replace or remove custom attributes.

Before going ahead, it is important to understand the multicasting algorithm. The algorithm relies on
a notion of order of processing of aspect instances.

PostSharp 3.0 Documentation

125

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_Inheritance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm

Applying Multiple Instances of the Same Aspect

Important

This section covers how PostSharp handles multiple instances of the same aspect type for the
sole purpose of computing how aspect instances should be overridden or removed. See Coping
with Several Aspects on the Same Target at page 201 to understand how to cope with multiple
instances of different aspects.

The following rules apply:

1. Aspect instances defined on a container (for instance a type) have always precedence over
instances defined on an item of that container (for instance a method). Elements of code
are processed in the following order: assembly, module, type, field, property, event, method,
parameter.

2. When multiple aspect instances are defined on the same level, they are sorted by increasing
of value of the AttributePriority.

The algorithm builds a list of aspect instances applied (directly and indirectly) on an element of code,
sorts these instances, and processes overrides or removals as described below.

The property MulticastAttributeUsageAttribute AllowMultiple determines whether multiple instances
of the same aspect are allowed on an element of code. By default, this property is set to true for all
aspects.

In the following example, the methods in type MyClass are enhanced by one, two and three instances
of the Trace aspect (see code comments).

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using Samples3;

[assembly: Trace(AttributeTargetTypes = "Samples3.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples3.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples3
{

[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

PostSharp 3.0 Documentation

126

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributePriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_AllowMultiple.htm

Overriding an Aspect Instance Manually

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspects with Category set to A, B
public void Method2()
{
}

// This method will have 3 Trace aspects with Category set to A, B, C.
[Trace(Category = "C")]
public void Method3()
{
}

}
}

You can require an aspect instance to override any previous one by setting the aspect property
AttributeReplace. This is equivalent to a deletion followed by an insertion (see below).

In the following examples, the first two methods of type MyClass are enhanced by aspects applied on
assembly level, but these aspects are replaced by a different one on Method3.

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using Samples5;

[assembly: Trace(AttributeTargetTypes = "Samples5.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples5.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples5
{

[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

PostSharp 3.0 Documentation

127

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeReplace.htm

Overriding an Aspect Instance Automatically

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspect with Category set to A, B.
public void Method2()
{
}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C", AttributeReplace = true)]
public void Method3()
{
}

}
}

To cause a new aspect instance to automatically override any previous one, the aspect developer
must disallow multiple instances by annotating the aspect class with the custom attribute Multicast-
AttributeUsageAttribute and setting the property AllowMultiple to false.

In the following example, the methods in type MyClass are enhanced by a single Trace aspect:

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using Samples4;

[assembly: Trace(AttributeTargetTypes = "Samples4.My*", AttributePriority = 1, Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples4.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, AttributePriority = 2, Category = "B")]

namespace Samples4
{

[MulticastAttributeUsage(MulticastTargets.Method, AllowMultiple = false)]
[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

PostSharp 3.0 Documentation

128

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_AllowMultiple.htm

Deleting an Aspect Instance

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 1 Trace aspects with Category set to B.
public void Method2()
{
}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C")]
public void Method3()
{
}

}
}

The MulticastAttribute AttributeExclude property removes any previous instance of the same aspect
on a target.

This is useful, for instance, when you need to exclude a target from the matching set of a wildcard
expression. For instance:

[assembly: Configurable(AttributeTypes = "BusinessLayer.*")]

namespace BusinessLayer
{

[Configurable(AttributeExclude = true)]
public static class Helpers
{

}
}

4.1.5. Reflecting Aspect Instances at Runtime
Attribute multicasting has been primarily designed as a mechanism to add aspects to a program. Most
of the time, the custom attribute representing an aspect can be removed after the aspect has been
applied.

By default, if you add an aspect to a program and look at the resulting program using a disassembler
or System.Reflection, you will not find these corresponding custom attributes.

If you need your aspect (or any other multicast attribute) to be reflected by System.Reflection or any
other tool, you have to set the MulticastAttributeUsageAttribute PersistMetaData property to true.

PostSharp 3.0 Documentation

129

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeExclude.htm
http://msdn2.microsoft.com/en-us/library/136wx94f
http://msdn2.microsoft.com/en-us/library/136wx94f
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_PersistMetaData.htm

Overview of the Multicasting Algorithm

For instance:

[MulticastAttributeUsage(MulticastTargets.Class, PersistMetaData = true)]
public class TagAttribute : MulticastAttribute
{

public string Tag;
}

Note

Multicasting of attributes is not limited only to PostSharp aspects. You can multicast any custom
attribute in your codebase in the same way as shown here. If a custom attribute is multicast with
the PersistMetaData property set to true, when relfected on the compiled code will look as if you
had manually added the custom attribute in all of the locations.

4.1.6. Understanding Attribute Multicasting
This topic contains the following sections.

• Overview of the Multicasting Algorithm
• Filtering Target Elements of Code
• Filtering Properties
• Overriding Filtering Attributes

Every multicast attribute class must be assigned a set of legitimate targets using the Multicast-
AttributeUsageAttribute custom attribute, which is the equivalent and complement of Attribute-
UsageAttribute for multicast attributes. Multicast attributes can be applied to types, methods, fields,
properties, events, or/or parameters. For instance, a caching aspect targets methods. A field validation
aspect targets fields.

When a field-level multicast attribute is applied to a type, the attribute is implicitly applied to all fields
of that type. When it is applied on an assembly, it is implicitly applied to all fields of that assembly.

The general rule is: when a multicast attribute is applied on a container, it is implicitly (and recursively)
applied to all elements of that container.

The next table illustrates how this rule translates for different kinds of targets.

Directly applied to Implicitly applied to

Assembly or
Module

Types, methods, fields, properties, parameters, and events contained in this assembly or
module.

Type Methods, fields, properties, parameters, and events contained in this type.

Property or Event Accessors of this property or event.

PostSharp 3.0 Documentation

130

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_PersistMetaData.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://msdn2.microsoft.com/en-us/library/4kc2f9bs
http://msdn2.microsoft.com/en-us/library/4kc2f9bs

Filtering Target Elements of Code

Directly applied to Implicitly applied to

Method This method and the parameters of this method.

Field This field.

Parameter This parameter.

Note that the default behavior is maximalist: we apply the attribute to all contained elements.
However, PostSharp provides a way to restrict the set of elements to which the attribute is multicast:
filtering.

Both the attribute developer and the user of the aspect can specify filters.

Developer-Specified Filtering

Just like normal custom attributes should be decorated with the [AttributeUsage] custom attribute,
multicast custom attributes must be decorated by the [MulticastAttributeUsage] attribute (see
MulticastAttributeUsageAttribute). It specifies which are the valid targets of the multicast attributes.

For instance, the following piece of code specifies that the attribute GuiThreadAttribute can be
applied on instance methods. Aspect users experience a build-time error when trying to use this
aspect on a constructor or static method.

[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage(AttributeTargets.Assembly|AttributeTargets.Class|AttributeTargets.Method, AllowMultiple = true)]
[Serializable]
public class GuiThreadAttribute : MethodInterceptionAspect
{
// Details skipped.
}

Note the presence of the AttributeUsageAttribute attribute in the sample above. It tells the C# or
Visual Basic compiler that the attribute can be directly applied to assemblies, classes, constructors,
or methods. But this aspect will never be eventually applied to an assembly or a class. Indeed,
the MulticastAttributeUsageAttribute attribute specifies that the sole valid targets are methods.
Furthermore, the TargetMemberAttributes property establishes a filter that includes only instance
methods.

Therefore, if the aspect is applied on a type containing an abstract method, the aspect will not be
multicast to this method, neither to its constructors.

Tip

Additionally to multicast filtering, consider using programmatic validation of aspect usage. Any
custom attribute can implement IValidableAnnotation to implement build-time validation of
targets. Aspects that derive from Aspect already implement these interfaces: your aspect can
override the method CompileTimeValidate(Object).

PostSharp 3.0 Documentation

131

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://msdn2.microsoft.com/en-us/library/4kc2f9bs
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IValidableAnnotation.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Aspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm

Filtering Properties

Tip

As an aspect developer, you should enforce as many restrictions as necessary to ensure that your
aspect is only used in the way you intended, and raise errors in other cases. Using an aspect in an
unexpected way may result in runtime errors that are difficult to debug.

User-Specified Filtering

The attribute user can specify multicasting filters using specific properties of the MulticastAttribute
class. To make it clear that these properties only impact the multicasting process, they have the prefix
Attribute.

As an aspect user, it is important to understand that you can only apply aspects to elements of codes
that have been allowed by the developer of the aspect.

For instance, the following element of code adds a tracing aspect to all public methods of a
namespace:

[assembly: Trace(AttributeTargetTypes="AdventureWorks.BusinessLayer.*", AttributeTargetMemberAttributes = MulticastAttributes.Public)]

The following table lists the filters available to users and developers of aspects:

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetElements ValidOn Restricts the kinds of targets (assemblies, classes,
value types, delegates, interfaces, properties,
events, properties, methods, constructors,
parameters) to which the attribute can be
indirectly applied.

AttributeTargetAssemblies Wildcard expression or regular expression
specifying to which assemblies the attribute is
multicast.

AllowExternalAssemblies Determines whether the aspect can be applied to
elements defined in a different assembly than the
current one.

AttributeTargetTypes Wildcard expression or regular expression filtering
by name the type to which the attribute is applied,
or the declaring type of the member to which the
attribute is applied.

AttributeTargetTypeAttributes TargetTypeAttributes Restricts the visibility of the type to which the
aspect is applied, or of the type declaring the
member to which the aspect is applied.

AttributeTargetMembers Wildcard expression or regular expression filtering
by name the member to which the attribute is
applied.

AttributeTargetMemberAttributes TargetMemberAttributes Restricts the attributes (visibility, virtuality,
abstraction, literality, ...) of the member to which
the aspect is applied.

PostSharp 3.0 Documentation

132

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetElements.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_ValidOn.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetAssemblies.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_AllowExternalAssemblies.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_TargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetMembers.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetMemberAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_TargetMemberAttributes.htm

Overriding Filtering Attributes

Lines of Inheritance

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetParameters Wildcard expression or regular expression
specifying to which parameter the attribute is
multicast.

AttributeTargetParameterAttributes TargetParameterAttributes Restricts the attributes (in/out/ref) of the
parameter to which the aspect is applied.

AttributeInheritance Inheritance Specifies whether the aspect is propagated along
the lines of inheritance of the target interface,
class, method, or parameter (see Understanding
Aspect Inheritance at page 133).

Caution

Whenever possible, do not rely on naming conventions to apply aspects (properties Attribute-
TargetTypes, AttributeTargetMembers and AttributeTargetParameters). This may work perfectly
today, and break tomorrow if someone renames an element of code without being aware of the
aspect.

Suppose we have two classes A and B, B being derived from A. Both A and B can be decorated with
MulticastAttributeUsageAttribute. However, since B is derived from A, filters on B cannot be more
permissive than filters on A.

In other words, the MulticastAttributeUsageAttribute custom attribute is inherited. It can be
overwritten in derived classes, but derived class cannot enlarge the set of possible targets. They can
only restrict it.

Similarly (and hopefully predictably), the aspect user is subject to the same rule: she can restrict the
set of possible targets supported by the aspect, but cannot enlarge it.

4.1.7. Understanding Aspect Inheritance
This topic contains the following sections.

• Lines of Inheritance
• Strict and Multicast Inheritance

Aspect inheritance is supported on the following elements.

PostSharp 3.0 Documentation

133

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetParameters.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetParameterAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_TargetParameterAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeInheritance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_Inheritance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetMembers.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetParameters.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm

Strict and Multicast Inheritance

Aspect Applied On Aspect Propagated To

Interface Any class implementing this interface or any other interface deriving this
interface.

Class Any class derived from this class.

Virtual or Abstract Methods Any method implementing or overriding this method.

Interface Methods Any method implementing that interface semantic.

Parameter or Return Value of an abstract,
virtual or interface method

The corresponding parameter or to the return value of derived methods
using the method-level rules described above.

Assembly All assemblies referencing (directly or not) this assembly.

Note

Aspect inheritance is not supported on events and properties, but it is supported on event and
property accessors. The reason of this limitation is that there is actually nothing like “event
inheritance” or “property inheritance” in MSIL (events and properties have nearly no existence for
the CLR: these are pure metadata intended for compilers). Obviously, aspect inheritance is not
supported on fields.

To understand the difference between strict and multicast inheritance, remember the original role of
MulticastAttribute: to propagate custom attributes along the lines of containment. So, if you apply a
method-level attribute to a type, the attribute will be propagated to all the methods of this type (some
methods can be filtered out using specific properties of MulticastAttribute, or MulticastAttribute-
UsageAttribute; see Adding Aspects Declaratively Using Attributes at page 114 for details).

The difference between strict and multicasting inheritance is that, with multicasting inheritance (but
not with strict inheritance), even inherited attributes are propagated along the lines of containment.

Consider the following piece of code, where A and B are both method-level aspects.

[A(AttributeInheritance = MulticastInheritance.Strict)]
[B(AttributeInheritance = MulticastInheritance.Multicast)]
public class BaseClass
{

// Aspect A, B.
public virtual void Method1();

}

public class DerivedClass : BaseClass
{

// Aspects A, B.
public override void Method1() {}

// Aspect B.
public void Method2();

}

PostSharp 3.0 Documentation

134

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm

See Also

If you just look at BaseClass, there is no difference between strict and multicasting inheritance.
However, if you look at DerivedClass, you see the difference: only aspect B is applied to MethodB.

The multicasting mechanism for aspect A is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method.

For aspect B, the mechanism is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass::Method1 to
DerivedClass.Method2.

3. Propagation along the lines of inheritance from BaseClass to DerivedClass.

4. Propagation along the lines of containment from DerivedClass to DerivedClass.Method1and
DerivedClass.Method2.

In other words, the difference between strict and multicasting inheritance is that multicasting
inheritance applies containment propagation rules to inherited aspects; strict inheritance does not.

Avoiding Duplicate Aspects

If you read again the multicasting mechanism for aspect B, you will notice that the aspect B is actually
applied twice to DerivedClass.Method1: one instance comes from the inheritance propagation from
BaseClass.Method1, the other instance comes from containment propagation from DerivedClass.

To avoid surprises, PostSharp implements a mechanism to avoid duplicate aspect instances. The rule: if
many paths lead from the same custom attribute usage to the same target element, only one instance
of this custom attribute is applied to the target element.

Caution

Attention: you can still have many instances of the same custom attribute on the same target
element if they have different origins (i.e. they originate from different lines of code, typically).
You can enforce uniqueness of custom attribute instances by using AllowMultiple. See the section
Overriding and Removing Aspect Instances at page 125 for details.

Reference

MulticastAttribute
MulticastAttributeUsageAttribute

PostSharp 3.0 Documentation

135

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttributeUsageAttribute_AllowMultiple.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm

Specifying an attribute in XML

4.2. Adding Aspects Using XML
PostSharp not only allows aspects to be applied in code, but also through XML. This is accomplished
by adding them to your project’s .psproj file.

Adding aspects through XML gives the advantage of applying aspects without modifying the source
code, which could be an advantage in some legacy projects.

This example is based on the AutoDataContractAttribute explained in the section Example: Automat-
ically Adding DataContract and DataMember Attributes at page 247.

namespace MyCustomAttributes
{

// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

}

Normally AutoDataContractAttribute would be applied to Customer in code as follows:

namespace MyNamespace
{

[AutoDataContractAttribute]
class Customer
{

public string FirstName {get; set;}
public string LastName { get; set; }

}
}

Using XML instead, we can remove the custom attribute from source code and instead specify a
Multicast element in the PostSharp project file, a file that has the same name as your project file
(csproj or svproj), but with the .psproj extension:

<?xml version="1.0" encoding="utf-8"?>
<Project xmlns="http://schemas.postsharp.org/1.0/configuration">

<Multicast xmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">
<my:AutoDataContractAttribute AttributeTargetTypes=" MyNamespace.Customer" />

</Multicast>

</Project>

PostSharp 3.0 Documentation

136

See Also

In this snippet, the xmlns:my attribute associates a prefix to an XML namespace, which must be
mapped to the .NET namespace and assembly where custom attributes classes are defined:

<Multicast xmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">

The next line then specifies the custom attribute to apply and the target attributes to apply the custom
attributes to:

<my:AutoDataContractAttribute AttributeTargetTypes="MyNamespace.Customer" />

The XML element name must be the name of a class inside the .NET namespace and assembly as
defined by the XML namespace. Attributes of this XML element map to public properties or fields of
this class.

Note that any property inherited from MulticastAttribute can be used here in order to apply the aspect
to several classes at a time. See the section Adding Aspects to Multiple Declarations at page 116 for
details about these properties.

4.3. Adding Aspects Programmatically using
IAspectProvider
You may have situations where you are looking to implement an aspect as part of a larger pattern.
Perhaps you want to add an aspect, implement an interface and dynamically inject some logic into
the target code. In those situations you will want to apply an aspect to the target code and have that
aspect then add other aspects to other elements of code.

The theoretical concept can cause some mental gymnastics, so let's take a look at the implementation.

1. Create an aspect that implements that IAspectProvider interface.

public class ProviderAspect : IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

throw new System.NotImplementedException();
}

}

PostSharp 3.0 Documentation

137

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

2. Cast the target object parameter to the type that will be targeted by this aspect: Assembly,
Type, MethodInfo, ConstructorInfo or LocationInfo.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type) targetElement;

throw new NotImplementedException();
}

3. In the ProvideAspects(Object) method returns an AspectInstance of the aspect type you want,
for every target element of code.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type)targetElement;

return type.GetMethods().Select(
m => return new AspectInstance(targetElement, new LoggingAspect()));

}

This aspect will now add aspects dynamically at compile time. Use of the IAspectProvider interface
and technique is usually reserved for situations where you are trying to implement a larger design
pattern. For example, it would be used when implementing an aspect that created the NotifyProperty-
ChangedAttribute pattern across a large number of locations in your codebase. It is overkill for many
of the situations that you will encounter. Use it only for complicated pattern implementation aspects
that you will create.

Note

To read more about NotifyPropertyChangedAttribute, see Customizing the NotifyProperty-
Changed Aspect at page 95.

Note

PostSharp does not automatically initialize the aspects provided by IAspectProvider, even if the
method CompileTimeInitialize is defined. Any initialization, if necessary, should be done in the
ProvideAspects method or in the constructor of provided aspects.

However, these aspects are initialized at runtime just like normal aspects using the
RunTimeInitialize method.

PostSharp 3.0 Documentation

138

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

Creating Graphs of Aspects

See Also

It is common that aspects provided by IAspectProvider (children aspects) form an object graph. For
instance, children aspects may contain a reference to the parent aspect.

An interesting feature of PostSharp is that object graphs instantiated at compile-time are serialized,
and can be used at run-time. In other words, if you store in a child aspect a reference to another
aspect, you will be able to use this reference at runtime.

Reference

IAspectProvider
NotifyPropertyChangedAttribute
ProvideAspects(Object)
AspectInstance

PostSharp 3.0 Documentation

139

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm

PostSharp 3.0 Documentation

140

Aspect Classes

CHAPTER 5

Developing Custom Aspects

5.1. Developing Simple Aspects
In PostSharp, developing an aspect is as simple as deriving a primitive aspect class and overriding
some special methods named advice. Aspects encapsulate a transformation of an element of code
(such as a method or a property), and advices are the methods that are executed at runtime.

For instance, the effect of the aspect OnMethodBoundaryAspect is to wrap the target method
into a try/catch/finally construct, and the advices of this aspect are OnEntry(MethodExecution-
Args), OnSuccess(MethodExecutionArgs), OnException(MethodExecutionArgs) and OnExit(Method-
ExecutionArgs)

By default, advices of primitive aspect types have an empty implementation, so the aspect has no
effect until you override at least one advice.

To develop a simple aspect:

1. Add PostSharp to your project. See Installing PostSharp at page 14 for details.

2. Create a new class and make it derive from one of the primitive aspect classes (see below).

3. Annotate the class with the custom attribute SerializableAttribute, or PSerializableAttribute if
your project targets anything else than the full .NET Framework. See Understanding Aspect
Lifetime and Scope at page 178 to understand why.

4. Override one of the aspect advice methods.

The following table gives a list of available primitive aspect classes. Every aspect class is described in
greater detailed in the class reference documentation.

PostSharp 3.0 Documentation

141

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm

Aspect Type Targets Description

OnMethodBoundaryAspect Methods Methods enhanced with an OnMethodBoundaryAspect are
wrapped by a try/catch/finally construct. This aspect
provides the advices OnEntry(MethodExecutionArgs),
OnSuccess(MethodExecutionArgs),
OnException(MethodExecutionArgs) and
OnExit(MethodExecutionArgs); these advices are invoked
directly from the transformed method, the return value, and the
exception (if applicable). This aspect is useful to implement
tracing or transaction handling, for instance.

For details, see Injecting Behaviors Before and After Method
Execution at page 144.

OnExceptionAspect Methods Methods enhanced with an OnExceptionAspect are wrapped by
a try/catch construct. This aspect provides the advice
OnException(MethodExecutionArgs); this advice is invoked
from the catch block. This aspect is useful to implement
exception handling policies. Contrarily to
OnMethodBoundaryAspect, this aspect lets you define the type
of caught exceptions by overriding the method
GetExceptionType(MethodBase)

For details, see Handling Exceptions at page 151.

MethodInterceptionAspect Methods When a method is enhanced by a MethodInterceptionAspect,
all calls to this method are replaced by calls to
OnInvoke(MethodInterceptionArgs), the only advice of this
aspect type. This aspect is useful when the execution of target
method can be deferred (asynchronous calls), must be
dispatched on a different thread.

For details, see Intercepting Methods at page 156.

LocationInterceptionAspect Fields,
Properties

When a field or a property is enhanced by a
LocationInterceptionAspect, all calls to its accessors are
replaced by calls to advices
OnGetValue(LocationInterceptionArgs) and
OnSetValue(LocationInterceptionArgs). Fields are transparently
replaced by properties. This aspect is useful to implement
functionalities that need to get or set the location value, such
as the observability design pattern (INotifyPropertyChanged).

For details, see Intercepting Properties and Fields at page 157.

PostSharp 3.0 Documentation

142

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_GetExceptionType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodInterceptionAspect_OnInvoke.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://msdn2.microsoft.com/en-us/library/ms133020

Aspect Type Targets Description

EventInterceptionAspect Events When an event is enhanced by an EventInterceptionAspect, all
calls to its add and remove semantics are replaced by calls to
advices OnAddHandler(EventInterceptionArgs) and
OnRemoveHandler(EventInterceptionArgs). Additionally, when
the event is fired, even of invoking directly the handlers that
were added to the event, the advice
OnInvokeHandler(EventInterceptionArgs) is called instead. This
aspect is useful to add functionalities to events, such as
implementing asynchronous events or materialized list of
subscribers.

For details, see Intercepting Events at page 164.

CompositionAspect Types This aspect introduces an interface into a type by composition.
The interface is introduced statically; the aspect method
GetPublicInterfaces(Type) should return the type of introduced
interfaces. However, the object implementing the interface is
created dynamically at runtime by the implementation of the
method CreateImplementationObject(AdviceArgs).

For details, see Introducing Interfaces at page 167.

CustomAttributeIntroductionAspect Any This aspect introduces a custom attribute on any element of
code. A custom attribute can be represented as a CustomAt-
tributeData or a ObjectConstruction.

For details, see Introducing Custom Attributes at page 170.

ManagedResourceIntroductionAspect Assemblies This aspect introduces a managed resource into the current
assembly.

For details, see Introducing Managed Resources at page 175.

ILocationValidationAspect Fields,
Properties,
Parameters

This aspect causes any new value assigned to its target to be
validated. If the aspect determines the value is invalid, an
exception is thrown. The aspects of the
PostSharp.Patterns.Contracts namespace are built on the top of
this interface aspect.

For details, see Validating Parameters, Fields and Properties at
page 103.

Tip

The implementation of aspects OnMethodBoundaryAspect and OnExceptionAspect is very
efficient; they should be preferred over other aspects whenever it makes sense.

PostSharp 3.0 Documentation

143

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnInvokeHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_GetPublicInterfaces.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://msdn2.microsoft.com/en-us/library/yh3c6wh2
http://msdn2.microsoft.com/en-us/library/yh3c6wh2
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_ObjectConstruction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ManagedResourceIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationValidationAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Patterns_Contracts.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm

Using Aspect Interfaces

Injection points

The primitive aspect classes listed above only exist for convenience. In reality, PostSharp only
understands interfaces. Every of these aspect classes implements a pair of interfaces. For instance,
the class OnMethodBoundaryAspect implements the interfaces IOnMethodBoundaryAspect and
IMethodLevelAspectBuildSemantics.

The aspect classes are more convenient because they derive from MulticastAttribute, which extends
System Attribute with multicasting capability. See Adding Aspects to Multiple Declarations at
page 116 for details.

If you do not need or want the capabilities of MulticastAttribute (for instance because the aspect is not
used as a custom attribute, see IAspectProvider), you can implement the aspect interface manually.
An aspect class must implement an interface derived from IAspect, and may implement an interface
derived from IAspectBuildSemantics. Please refer to the documentation of the aspect class to get
information about the corresponding aspect interface.

Additionally to the aspect interface corresponding to an aspect class, you can define the following
interfaces on aspect classes:

Aspect Interface Description

IAspectProvider This interface defines a single method ProvideAspects(Object), returning a collection of
AspectInstance. The method allows an aspect to dynamically provide other aspects to the
weaver.

IInstanceScopedAspect By default, aspects have static scope: there is one instance of the aspect per target class.
Implementing the IInstanceScopedAspect makes the aspect instance-scoped: there will be
one instance of this aspect per instance of the target class.

5.1.1. Injecting Behaviors Before and After Method
Execution
There are two ways to inject behaviors into methods. The first is the method decorator: it allows you
to add instructions before and after method execution. The second is method interception: the hook
gets invoked instead of the method. Decorators are faster than interceptors, but interceptors are more
powerful. The current article covers decorators. For the other aspect, see Intercepting Methods at
page 156.

You may want to use method decorators to perform logging, monitor performance, initialize database
transactions or any one of many other infrastructure related tasks. PostSharp provides you with an
easy to use framework for all of these tasks in the form of the OnMethodBoundaryAspect.

When you are decorating methods there are different locations that you may wish to inject
functionality to. You may want to perform a task prior to the method executing or just before it
finishes execution. There are situations where you may want to inject functionality only when the

PostSharp 3.0 Documentation

144

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IOnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IMethodLevelAspectBuildSemantics.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://msdn2.microsoft.com/en-us/library/e8kc3626
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectBuildSemantics.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm

method has successfully executed or when it has thrown an exception. All of these injection points are
structured and available to you in the OnMethodBoundaryAspect.

To create a simple aspect that writes some text whenever a method enters, succeeds,
or fails:

1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the
[SerializableAttribute] custom attribute.

Note

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets
Silverlight, Windows Phone, Windows Store, or runs with partial trust.

2. To add functionality prior to the execution of the target method, override the method and
code the functionality you desire.

[Serializable]
public class LoggingAspect : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has been entered.", args.Method.Name);
}

}

3. Inject functionality immediately after the method executes by overriding the OnExit(Method-
ExecutionArgs) method.

Note

It's important to remember that the OnExit(MethodExecutionArgs) method will execute
every time that the target method completes its execution regardless of if the target
method completed successfully or threw an exception.

public override void OnExit(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has exited", args.Method.Name);
}

PostSharp 3.0 Documentation

145

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm

Accessing the method

Accessing parameters

4. To add functionality that only executes when the target method has completed successfully,
you will override the OnSuccess(MethodExecutionArgs) method in your aspect. The On-
Success(MethodExecutionArgs) method will be executed every time that the target method
completes successfully. If the target method throws an exception OnSuccess(Method-
ExecutionArgs) will not execute.

public override void OnSuccess(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method executed successfully.", args.Method.Name);
}

5. The final location that you can intercept requires you to override the OnException(Method-
ExecutionArgs) method. As the name of the overrode method suggests, this is where you can
inject functionality that should execute when the target method throws and exception.

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine("An exception was thrown in {0}.", args.Method.Name);
}

The four methods (OnEntry(MethodExecutionArgs), OnExit(MethodExecutionArgs), On-
Success(MethodExecutionArgs) and OnException(MethodExecutionArgs)) that you overrode are the
locations that you are able to intercept method execution. Between these four location you are able
to implement many different infrastructure patterns with minimal effort.

As illustrated in the examples above, you can access information about the method being intercepted
from the property Method, which gives you a reflection object MethodBase. This object gives you
access to parameters, return type, declaring type, and other characteristics. In case of generic methods
or generic types, Method gives you the proper generic method instance, so you can use this object to
get generic parameters.

It's rare that you will intercept method execution and not interact with the parameters that were
passed to the target method. For example, when you implement method interception for logging you
will probably want to log the parameter values that were passed to the target method.

Each of the interception locations that were outlined earlier has access to that information. If you
look at the OnEntry(MethodExecutionArgs) method in your aspect you will see that it has a Method-
ExecutionArgs parameter. That parameter is used for OnExit(MethodExecutionArgs), On-
Success(MethodExecutionArgs) and OnException(MethodExecutionArgs) as well. The collection
Arguments gives access to parameter values.

Let's modify the OnEntry(MethodExecutionArgs) method and include the parameter values in the log
message.

PostSharp 3.0 Documentation

146

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Method.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Method.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm

Accessing the target objects

To include argument values to the logged text:

1. Create a foreach loop to gather each of the parameter values in the Arguments property of
the args parameter.

2. In the loop concatenate the parameter values into a string.

3. Pass that string of argument values to the logging tool.

public override void OnEntry(MethodExecutionArgs args)
{

var argValues = new StringBuilder();
foreach (var argument in args.Arguments)
{

argValues.Append(argument.ToString()).Append(",");
}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}

Note

A production implementation of this aspect would need to take reentrance into account.
See the article Working with the Diagnostics Pattern Library at page 41 for a ready-made
logging aspect.

It's also possible to modify the parameter values inside your aspect methods. All you need to do is
modify the value of the item in the Arguments collection. Remember that all items in the Arguments
collection are object types so you will need to be careful with how you change values. If the value you
are modifying was originally a string, you will want to ensure it stays a string type. It's especially true
that when you change the parameter type in the OnEntry(MethodExecutionArgs) method you may
cause the system to be unable to execute the target method due to a parameter type mismatch.

Note

The only parameter types that you can modify are those defined as either out or ref. If you need
to modify input arguments, you should use Intercepting Methods at page 156.

In combination with the parameters you will probably interact with the target code instance that the
aspect is attached to. The Instance property provides you with the instance of the object that the
aspect is currently operating against. It is an object type so you will need to cast it to the correct type
to be able to interact with it. If you debug your aspect and that aspect doesn't make use of Instance,
it will be set to null. It's also set to null if the target code is defined as static.

PostSharp 3.0 Documentation

147

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_AdviceArgs_Instance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_AdviceArgs_Instance.htm

Accessing the return value

Changing execution flow

Like target method parameters you also have access to the return value for those target methods. It's
possible to both read the return value as well as modify it. The return value can be found at Return-
Value in all four of the aspect methods covered earlier.

public override void OnExit(MethodExecutionArgs args)
{

args.ReturnValue = false;
}

Note

If a target method is defined as void, the ReturnValue property will be set to null. ReturnValue is
an object type so you must be careful how you modify the return value with respect to the return
value type of the target code.

Returning without executing the method

When your aspect is interacting with the target code, there are situations where you will need to alter
the execution flow behavior. For example, you may want to exit the execution of the target code at
some point in the OnEntry(MethodExecutionArgs) advice. PostSharp offers this ability through the use
of FlowBehavior.

public override void OnEntry(MethodExecutionArgs args)
{

if (args.Arguments.Count > 0 && args.Arguments[0] == null)
{

args.FlowBehavior = FlowBehavior.Return;
}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}

As you can see, all that is needed to exit the execution of the target code is setting the FlowBehavior
property on the MethodExecutionArgs to Return.

Note

Using flow control to exit the target code execution will return back to the code that called the
target code. As a result, you need to be considerate to the target code's return value. In the
example above, the target code will always return null. This may or may not be the behavior that
you want. If it isn't, you can set the ReturnValue on the MethodExecutionArgs and that value will
be returned from the target code.

PostSharp 3.0 Documentation

148

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_ReturnValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_ReturnValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_ReturnValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_ReturnValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_ReturnValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm

Sharing state between advices

Managing execution flow control when dealing with exceptions there are two primary situations that
you need to consider: re-throwing the exception and throwing a new exception.

Rethrowing an existing exception

To rethrow an existing exception, you will set the FlowBehavior property to RethrowException.
Whatever exception that was caught in the OnException(MethodExecutionArgs) advice will be
rethrown to the code that is calling the target code.

public override void OnException(MethodExecutionArgs args)
{

if (args.Exception.GetType() == typeof(DivideByZeroException))
{

args.FlowBehavior = FlowBehavior.RethrowException;
}

}

Throwing a new exception

To throw a new exception you will have to perform two tasks. First you will need to assign the new
exception to the Exception property. This is the exception that will be thrown as part of the flow
behavior. After that you will need to set the FlowBehavior property to ThrowException.

public override void OnException(MethodExecutionArgs args)
{

if (args.Exception.GetType() == typeof(IndexOutOfRangeException))
{

args.Exception = new CustomArrayIndexException("This was thrown from an aspect",
args.Exception);

args.FlowBehavior = FlowBehavior.ThrowException;
}

}

Note

The remaining FlowBehavior enumeration value is Continue. In OnException(MethodExecution-
Args), this behavior will not rethrow the caught exception. In OnEntry(MethodExecutionArgs),
OnSuccess(MethodExecutionArgs) and OnExit(MethodExecutionArgs) the target code execution
will continue with no interruption.

Note

The default FlowBehavior value for OnEntry(MethodExecutionArgs), OnSuccess(Method-
ExecutionArgs) and OnExit(MethodExecutionArgs) is Continue. For OnException(Method-
ExecutionArgs) the default value is RethrowException.

When you are working with multiple advices on a single aspect, you will encounter the need to share
state between these advices. For example, if you have created an aspect that times the execution of

PostSharp 3.0 Documentation

149

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Exception.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IOnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm

See Also

a method, you will need to track the starting time at OnEntry(MethodExecutionArgs) and share that
with OnExit(MethodExecutionArgs) to calculate the duration of the call.

To do this we use the MethodExecutionTag property on the MethodExecutionArgs parameter in each
of the advices. Because MethodExecutionTag is an object type, you will need to cast the value stored
in it while retrieving it and before using it.

[Serializable]
public class ExecutionDurationAspect : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

args.MethodExecutionTag = Stopwatch.StartNew();
}

public override void OnExit(MethodExecutionArgs args)
{

var sw = (Stopwatch)args.MethodExecutionTag;
sw.Stop();

System.Diagnostics.Debug.WriteLine("{0} executed in {1} seconds", args.Method.Name,
sw.ElapsedMilliseconds / 1000);

}
}

Note

The value stored in MethodExecutionTag will not be shared between different instances of the
aspect. If the aspect is attached to two different pieces of target code, each attachment will have
its own unshared MethodExecutionTag for state storage.

Reference

OnMethodBoundaryAspect
Arguments
MethodExecutionTag
OnMethodBoundaryAspect
SerializableAttribute
PSerializableAttribute
OnExit(MethodExecutionArgs)
OnSuccess(MethodExecutionArgs)
OnException(MethodExecutionArgs)
OnEntry(MethodExecutionArgs)
Method
Arguments
Other Resources

PostSharp Aspect Framework - Product Page6

PostSharp 3.0 Documentation

150

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnExit.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnSuccess.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Method.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_Arguments.htm
http://www.postsharp.net/aspects

Intercepting an exception

5.1.2. Handling Exceptions
Adding exception handlers to code requires the addition of try/catch statements which can quickly
pollute code. Exception handling implemented this way is also not reusable, requiring the same logic
to be implemented over and over where ever exceptions must be dealt with. Raw exceptions also
present cryptic information and can often expose too much information to the user.

PostSharp provides a solution to these problems by allowing custom exception handling logic to be
encapsulated into a reusable class, which is then easily applied as an attribute to all methods and
properties where exceptions are to be dealt with.

This topic contains the following sections.

• Intercepting an exception
• Specifying the type of handled exceptions
• Ignoring exceptions
• Replacing exceptions
• Displaying the method arguments on exception

PostSharp provides the OnExceptionAspect class which is the base class from which exception
handlers are to be derived from.

The key element of this class is the OnException(MethodExecutionArgs) method: this is the method
where the exception handling logic (i.e. what would normally be in a catch statement) goes. A
MethodExecutionArgs parameter is passed into this method by PostSharp; it contains information
about the exception.

To create an OnExceptionAspect class:

1. Derive a class from OnExceptionAspect.

2. Apply the SerializableAttribute to the class.

3. Override OnException(MethodExecutionArgs) and implement your exception handling logic
in this class.

The following snippet shows an example of an exception handler which watches for exceptions of any
type, and then writes a message to the console when an exception occurs:

[Serializable]
public class PrintExceptionAttribute : OnExceptionAspect
{

6. http://www.postsharp.net/aspects

PostSharp 3.0 Documentation

151

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://www.postsharp.net/aspects

Specifying the type of handled exceptions

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

Once created, apply the derived class to all methods and/or properties for which the exception
handling logic is to be used, as shown in the following example:

class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException]
public void StoreName(string path)
{

File.WriteAllText(path, string.Format(“{0} {1}”, this.FirstName, this.LastName));
}

}

Here PrintException will output a message when an exception occurs in trying to write text to a file.

Alternatively the attribute can be applied to the class itself as shown below, in which case the
exception handler will handle exceptions for all methods and properties in the class:

[PrintExceptionAttribute(typeof(IOException))]
class Customer
{

.

.

.
}

See the section Adding Aspects to Multiple Declarations at page 116 for details about attribute
multicasting.

The GetExceptionType(MethodBase) method can be used to return the type of the exception which is
to be handled by this aspect. Otherwise, all exceptions will be caught and handled by this class.

Note

The GetExceptionType(MethodBase) method is evaluated at build time.

In the following snippet, we updated the PrintExceptionAttribute aspect and added the possibility
to specify from the custom attribute constructor which type of exception should be traced.

PostSharp 3.0 Documentation

152

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_GetExceptionType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_GetExceptionType.htm

[Serializable]
public class PrintExceptionAttribute : OnExceptionAspect
{

Type type;

public PrintExceptionAttribute() : this(typeof(Exception))
{
}

public PrintExceptionAttribute (Type type)
: base()

{
this.type = type;

}

// Method invoked at build time.
// Should return the type of exceptions to be handled.
public override Type GetExceptionType(MethodBase method)
{

return this.type;
}

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

Example:

class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException(typeof(IOException)]
public void StoreName(string path)
{

File.WriteAllText(path, string.Format(“{0} {1}”, this.FirstName, this.LastName));
}

}

Note

If the aspect needs to handle several types of exception, the GetExceptionAspect should return
a common base type, and the OnException implementation should be modified to dynamically
handle different types of exception.

PostSharp 3.0 Documentation

153

Ignoring exceptions

The FlowBehavior member of MethodExecutionArgs in the exception handler’s OnException(Method-
ExecutionArgs) method, can be set to ignore an exception. Note however that ignoring exceptions is
generally dangerous and not recommended. In practice, it’s only safe to ignore exceptions in event
handlers (e.g. to display a message in a WPF form) and in thread entry points.

Exceptions can be ignored by setting the FlowBehavior to Return:

[Serializable]
public class PrintAndIgnoreExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;

}
}

If a method returns a value then the ReturnValue member of args can be set to an object to return.
For example, consider the following GetDataLength method in Customer which returns the number of
characters read from a file:

class Customer
{

[PrintException(typeof(IOException))]
public int GetDataLength(string path)
{

return File.ReadAllText(path).Length;
}

}

We can then modify the OnException(MethodExecutionArgs) method of
PrintAndIgnoreExceptionAttribute to return an integer with a value of -1:

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;
args.ReturnValue = -1;

}

PostSharp 3.0 Documentation

154

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm

Replacing exceptions

Displaying the method arguments on exception

Many times an exception must be exposed to the user, either by allowing the original exception to be
rethrown, or by throwing a new exception. This can be done by setting FlowBehavior as follows:

FlowBehavior.RethrowException: rethrows the original exception after the exception handler
exits. This is the default behavior for the OnException(MethodExecutionArgs) advise.

FlowBehavior.ThrowException: throws a new exception once the exception handler exits. This
is useful when details of the original exception should be hidden from the user or when a
more meaningful exception is to be shown instead. When throwing a new exception, a new
exception object must be assigned to the Exception member of MethodExecutionArgs. The
following snippet shows the creation of a new BusinessExceptionAttribute which throws a
BusinessException containing a description of the cause:

[Serializable]
public sealed class BusinesssExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

.

.

.
args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException("Bad Arguments", new Exception("One or more arguments were null. Use the id " + guid.ToString() + " for more information"));

}
}

class BusinessException : Exception
{

public BusinessException(string message, Exception innerException) : base(message, innerException)
{
}

}

When an exception is thrown, it can be useful to view and display the parameter values that were
passed into the method where the exception occurred. These values can be retrieved by iterating
through the Arguments field of OnException(MethodExecutionArgs)’s args parameter. In the following
snippet, OnException(MethodExecutionArgs) has been modified to iterate through all exception
values, and to concatenate them into a string. If a null value is encountered, then the code embeds the
word “null” into the string. This string is then displayed as the message of the NullReferenceException
which is rethrown:

public override void OnException(MethodExecutionArgs args)
{

PostSharp 3.0 Documentation

155

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm

See Also

Optional section title

string parameterValues = "";

foreach (object arg in args.Arguments)
{

if (parameterValues.Length > 0)
{

parameterValues += ", ";
}

if (arg != null)
{

parameterValues += arg.ToString();
}
else
{

parameterValues += "null";
}

}

Console.WriteLine(“Exception {0} in {1}.{2} invoked with arguments {3}”, args.Exception.GetType().Name, args.Method.DeclaringType.FullName, args.Method.Name, parameterValues);
}

}

Note

The Arguments field of args cannot be directly viewed in the debugger. The Arguments field must
be referenced by another object in order to be viewable in the debugger.

Reference

OnException(MethodExecutionArgs)
MethodExecutionArgs
OnExceptionAspect
SerializableAttribute
GetExceptionType(MethodBase)

5.1.3. Intercepting Methods
Required introduction

Add one or more sections with content

PostSharp 3.0 Documentation

156

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_OnException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodExecutionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_GetExceptionType.htm

Intercepting Get operations

5.1.4. Intercepting Properties and Fields
In .NET, both fields and properties are "things" that can be set and get. You can intercept get and
set operations using the LocationInterceptionAspect. It makes it possible to develop useful aspects,
such as validation, filtering, change tracking, change notification, or property virtualization (where the
property is backed by a registry value, for instance).

This topic contains the following sections.

• Intercepting Get operations at page 157
• Intercepting Set operations at page 159
• Getting and setting the underlying property at page 160
• Intercepting fields at page 161
• Getting the property or property being accessed

In this example, we will see how to create an aspect that filters the value read from a field or property.

To create an aspect that filters the value read from a field or property

1. Create an aspect that inherits from LocationInterceptionAspect and add the custom attribute
[SerializableAttribute].

Note

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets
Silverlight, Windows Phone, Windows Store, or runs with partial trust.

2. Override the OnGetValue(LocationInterceptionArgs) method.

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{

public override void OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);
}

}

PostSharp 3.0 Documentation

157

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm

3. Calling base.OnGetValue actually retrieves the value from the underlying field or property,
and populates the Value property. Add some code to check if the property currently is set to
null If the current value is null, we want to return a predefined value. To do this we can set
the Value property. Any time this property is requested, and it is set to null, the value "foo"

will be returned.

public override void OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);

if (args.Value == null)
{

args.Value = "foo";
}

}

4. Now that you have a complete getter interception aspect written you can attach it to the
target code. Simply add an attribute to either properties or fields to have the interception
attached.

public class Customer
{

[StringChecker]
private readonly string _address;

public Customer(string address)
{

_address = address;
}
[StringChecker]
public string Name { get; set; }
public string Address { get { return _address; } }

}

Note

Adding aspects to target code one property or field at a time can be a tedious process.
There are a number of techniques in the article Adding Aspects to Multiple Declarations
at page 116 that explain how to add aspects en mass.

PostSharp 3.0 Documentation

158

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_LocationInterceptionArgs_Value.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_LocationInterceptionArgs_Value.htm

Intercepting Set operations

5. Now when you create an instance of a customer and immediately try to access the Name and
Address values the get request will be intercepted and null values will be returned as "foo".

class Program
{

static void Main(string[] args)
{

var customer = new Customer("123 Main Street");
Console.WriteLine("Address: {0}", customer.Address);
Console.WriteLine("Name: {0}", customer.Name);
Console.ReadKey();

}
}

Property and field interception is a simple and seamless task. Once you have intercepted your target
you can act on the target or you can allow the original code to execute.

The previous section showed how to intercept a get accessor. Intercepting a set accessor is
accomplished in a similar manner by implementing OnSetValue(LocationInterceptionArgs) in the
LocationInterceptionAspect.

The following snippet shows the addition of OnSetValue(LocationInterceptionArgs) to the
StringCheckerAttribute example:

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{
public override void OnGetValue(LocationInterceptionArgs args)
{
base.OnGetValue(args);
}

PostSharp 3.0 Documentation

159

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm

Getting and setting the underlying property

public override void OnSetValue(LocationInterceptionArgs args)
{
base.OnSetValue(args);
}
}

When applied to a property with a set operator, OnSetValue(LocationInterceptionArgs) will intercept
the set operation. In the Customer example shown below, OnSetValue(LocationInterceptionArgs) will
be called whenever the Name property is set:

public class Customer
{

.

.

.
[StringChecker]
public string Name { get; set; }
}

The SetNewValue(Object) method of LocationInterceptionArgs can be used instead of
base.OnSetValue() to pass a different value in for the property. For example, OnSetValue(Location-
InterceptionArgs) could be used to check for a null string, and then change the string to a non-null
value:

[Serializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{

.

.

.
public override void OnSetValue(LocationInterceptionArgs args)
{
if (args.Value == null)
{
args.Value = “Empty String";
}

args.ProceedSetValue();

}
}

PostSharp provides a mechanism to check a property’s underlying value via LocationInterception-
Args’s GetCurrentValue method. This can be useful to check the current property value when a setter
is called and then take some appropriate action.

PostSharp 3.0 Documentation

160

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_SetNewValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_GetCurrentValue.htm

Intercepting fields

For example, the following snippet shows a modified OnSetValue(LocationInterceptionArgs) method
which gets the current underlying property value and compares the (new) value passed into the setter
against the current value. If current and new value don’t match then some message is written:

public override void OnSetValue(LocationInterceptionArgs args)
{

//get the current underlying value
string existingValue = (string)args.GetCurrentValue();

if (((existingValue==null) && (args.Value != null)) || (!existingValue.Equals(args.Value)))
{

Console.WriteLine(“Value changed.”);
args.ProceedSetValue();

}
}

Note

GetCurrentValue will call the underlying property getter without going through OnGet-
Value(LocationInterceptionArgs). If several aspects are applied to the property (and/or to the
property setter), GetCurrentValue will go through the next aspect in the chain of invocation.

PostSharp also provides a mechanism to set the underlying property in a getter via the SetNew-
Value(Object) method of LocationInterceptionArgs. This could be used for example, to ensure that a
default value is assigned to the underlying property if there is currently no value. The following snippet
shows a modified OnGetValue(LocationInterceptionArgs) method which gets the current underlying
value, and sets a default value if the current value is null:

public override void OnGetValue(LocationInterceptionArgs args)
{

object o = args.GetCurrentValue();
if (o == null)
{

args.SetNewValue("value not set");
}

base.OnGetValue(args);
}

One benefit to implementing a LocationInterceptionAspect is that it can be applied directly to fields,
allowing for reads and writes to those fields to be intercepted, just like with properties.

Applying a LocationInterceptionAspect implementation to a field is simply a matter of setting it as an
attribute on a field, just as it was done with a property:

public class Customer
{

PostSharp 3.0 Documentation

161

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_GetCurrentValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_GetCurrentValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_SetNewValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_SetNewValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm

Getting the property or property being accessed

.

.

.
[StringChecker]
public string name;
}

With the attribute applied to the name field, all attempts to get and set that field will be intercepted
by StringChecker in its OnGetValue(LocationInterceptionArgs) and OnSetValue(LocationInterception-
Args) methods.

Note that when a LocationInterceptionAspect is added to a field, the field is replaced by a property of
the same field and visibility. The field itself is renamed and made private.

Information about the property or field being intercepted can be obtained through the Location-
InterceptionArgs via its Location property. The type of this property, LocationInfo, can represent a
FieldInfo, a PropertyInfo, or a ParameterInfo (although LocationInterceptionAspect cannot be added
to parameters).

One use for this is to reflect the property name whenever a property is changed. In the following
example, we have an Entity class that implements INotifyPropertyChanged and a public
OnPropertyChanged method which allows notifications to be made whenever a property is changed.
The Customer class has been modified to derive from Entity.

class Entity : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged(string propertyName)
{

if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}
}

class Customer : Entity
{

public string Name { get; set; }
}

With the ability to invoke an OnPropertyChanged event, we can create a LocationInterceptionAspect
which invokes this event when setting a value and pass in the property name from the underlying
PropertyInfo object:

[Serializable]
public class NotifyPropertyChangedAttribute : LocationInterceptionAspect
{

PostSharp 3.0 Documentation

162

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_LocationInterceptionArgs_Location.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_LocationInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_FieldInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_PropertyInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_ParameterInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_PropertyInfo.htm

See Also

public override void OnSetValue(LocationInterceptionArgs args)
{
If (args.Value != args.GetCurrentValue())
{
args.Value = args.Value;
args.ProceedSetValue();
((Entity)args.Instance).OnPropertyChanged(args.Location.Name);
}
}
}

Note

This example is a simplistic implementation of the NotifyPropertyChangedAttribute aspect. For a
production-ready implementation, see the section Automatically implementing INotifyProperty-
Changed at page 90.

This aspect can then be applied to the Customer class:

[NotifyPropertyChangedAttribute]
class Customer : INotifyPropertyChanged
{

public string Name { get; set; }
}

Now when the Name property is changed, NotifyPropertyChangedAttribute will invoke the
Entity.OnPropertyChanged method passing in the property name retrieved from its underlying
property.

Reference

LocationInterceptionAspect
OnGetValue(LocationInterceptionArgs)
OnSetValue(LocationInterceptionArgs)
LocationInterceptionArgs
Location
LocationInfo
FieldInfo
PropertyInfo
ParameterInfo
INotifyPropertyChanged
NotifyPropertyChangedAttribute

PostSharp 3.0 Documentation

163

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnGetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionArgs.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_LocationInterceptionArgs_Location.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_LocationInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_FieldInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_PropertyInfo.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Reflection_LocationInfo_ParameterInfo.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Patterns_Model_NotifyPropertyChangedAttribute.htm

Intercepting Add and Remove

5.1.5. Intercepting Events
You interact with events in three primary ways; subscribing, unsubscribing and raising them. Like
methods and properties, you may find yourself needing to intercept these three interactions. How do
you execute code everytime that an event is subscribed to? Or raised? Or unsubscribed? PostSharp
provides you with a simple mechanism to accomplish this easily.

This topic contains the following sections.

• Intercepting Add and Remove at page 164
• Intercepting Raise at page 165
• Accessing the current context at page 166
• Example: Removing offending event subscribers at page 166

Throughout the life of an event it is possible to have many different event handlers subscribe and
unsubscribe. You may want to log each of these actions.

1. Create an aspect that inherits from EventInterceptionAspect. Add the [PSerializableAttribute]
custom attribute.

Note

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets
Silverlight, Windows Phone, Windows Store, or runs with partial trust.

2. Override the OnAddHandler(EventInterceptionArgs) method and add your logging code to
the method body.

3. Add the base.OnAddHandler call to the body of the OnAddHandler(EventInterceptionArgs)
method. If this is omitted, the original call to add a handler will not be executed. Unless you
want to stop the addition of the handler, you will need to add this line of code.

public class CustomEventing : EventInterceptionAspect
{

public override void OnAddHandler(EventInterceptionArgs args)
{

base.OnAddHandler(args);
Console.WriteLine("A handler was added");

}
}

4. To log the removal of an event handler, override the OnRemoveHandler(EventInterception-
Args) method.

PostSharp 3.0 Documentation

164

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm

Intercepting Raise

5. Add the logging you require to the method body.

6. Add the base.OnRemoveHandler call to the body of the OnRemoveHandler(EventInterception-
Args) method. Like you saw when overriding the OnAddHandler(EventInterceptionArgs)
method, if you omit this call, the original call to remove the handler will not occur.

public override void OnRemoveHandler(EventInterceptionArgs args)
{

base.OnRemoveHandler(args);
Console.WriteLine("A handler was removed");

}

Once you have defined the interception points in the aspect you will need to attach the aspect to the
target code. The simplest way to do this is to add the attribute to the event handler definition.

public class Example
{

public EventHandler<EventArgs> SomeEvent;

public void DoSomething()
{

if (SomeEvent != null)
{

SomeEvent.Invoke(this, EventArgs.Empty);
}

}
}

When you are intercepting events you will also have situations where you will want to intercept the
code execution when the event is raised. Raising an event can occur may places and you will want to
centralize this code to save repetition.

1. Override the OnInvokeHandler(EventInterceptionArgs) method on your aspect class and add
the logging you require to the method body.

2. Add a call to base.OnInvokeHandler to ensure that the original invocation occurs.

public override void OnInvokeHandler(EventInterceptionArgs args)
{

base.OnInvokeHandler(args);
Console.WriteLine("A handler was invoked");

}

By adding the attribute to the target code's event handler earlier in this process you have enabled
intercepting of each raised event.

PostSharp 3.0 Documentation

165

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnInvokeHandler.htm

Accessing the current context

Example: Removing offending event subscribers

At any time, the Handler property is set to the delegate being added, removed, or invoked. You can
read and write this property. If you write it, the delegate you assign must be compatible with the type
of the event. The Event property gets you the EventInfo of the event being accessed.

Within OnInvokeHandler(EventInterceptionArgs), the property Arguments gives access to the
arguments with which the delegate was invoked.

These concepts will be illustrated in the following example.

When events are subscribed to, the component that raises the event has no way to ensure that the
subscriber will behave properly when that event is raised. It's possible that the subscribing code will
throw an exception when the event is raised and when that happens you may want to unsubscribe
the handler to ensure that it doesn't continue to throw the exception. The EventInterceptionAspect is
powerful and can help you to accomplish this with ease.

1. Override the OnInvokeHandler(EventInterceptionArgs) method on your aspect.

2. In the method body add a try...catch block.

3. In the try block add a call to base.OnInvokeHandler and in the catch block add a call to
RemoveHandler(Delegate)

public class CustomEventing : EventInterceptionAspect
{

public override void OnInvokeHandler(EventInterceptionArgs args)
{

try
{

base.OnInvokeHandler(args);
}
catch (Exception e)
{

Console.WriteLine("Handler '{0}' invoked with arguments {1} failed with exception {2}",
args.Handler.Method,
string.Join(", ", args.Arguments.Select(

a => a == null ? "null" : a.ToString())),
e.GetType().Name);

args.RemoveHandler(args.Handler);
throw;

}
}

}

Now any time an exception is thrown when the event is executed, the offending event handler will be
unsubscribed from the event.

PostSharp 3.0 Documentation

166

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Handler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Event.htm
http://msdn2.microsoft.com/en-us/library/wzdwwzya
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnInvokeHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnInvokeHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionArgs_RemoveHandler.htm

See Also
Reference

EventInterceptionAspect
Handler
Event
PSerializableAttribute
SerializableAttribute
OnAddHandler(EventInterceptionArgs)
OnAddHandler(EventInterceptionArgs)
OnRemoveHandler(EventInterceptionArgs)
OnInvokeHandler(EventInterceptionArgs)
EventInfo
RemoveHandler(Delegate)

5.1.6. Introducing Interfaces
When you create a CompositionAspect you are able to dynamically add interfaces to the target code
at compile time and make use of that interface type at run time.

1. The first thing that you need to do is create an aspect that inherits from CompositionAspect
and implements its members.

[Serializable]
public class GeneralCompose : CompositionAspect
{

public override object CreateImplementationObject(AdviceArgs args)
{

throw new System.NotImplementedException();
}

}

PostSharp 3.0 Documentation

167

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Handler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Event.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnAddHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnRemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionAspect_OnInvokeHandler.htm
http://msdn2.microsoft.com/en-us/library/wzdwwzya
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_EventInterceptionArgs_RemoveHandler.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm

2. Next, you need some way to tell the aspect what interface and concrete type you want to
implement on the target code. To do that, create a constructor for your aspect that accepts
two parameters; one for the interface type and one for the concrete implementation type.
Assign those two constructor parameters to field level variables so we can make use of them
in the aspect.

[Serializable]
public class GeneralCompose : CompositionAspect
{

private readonly Type _interfaceType;
private readonly Type _implementationType;

public GeneralCompose(Type interfaceType, Type implementationType)
{

_interfaceType = interfaceType;
_implementationType = implementationType;

}

3. There are two methods that you need to implement to complete this aspect. The first is an
override of the GetPublicInterfaces(Type) method. This method has a target type parameter
which allows you to filter the application of the interface if you choose to. For this example,
simply return an array that contains the interface type that was provided via the aspect's
constructor.

protected override Type[] GetPublicInterfaces(Type targetType)
{
return new[] { _interfaceType };
}

Note

The interfaces that are returned from the GetPublicInterfaces(Type) method will be
applied to the target code during compilation.

PostSharp 3.0 Documentation

168

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_GetPublicInterfaces.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_GetPublicInterfaces.htm

4. The second method that you need to override is CreateImplementationObject(AdviceArgs).
For this example you will return an instance of the concrete implementation that was
provided in the aspect's constructor. The CreateImplementationObject(AdviceArgs) method
doesn't return the type of the concrete implementation. It returns an instance of that type
instead. To create the instance use the CreateInstance(Type, ActivatorSecurityToken) method.

public override object CreateImplementationObject(AdviceArgs args)
{
return Activator.CreateInstance(_implementationType);
}

Note

The CreateImplementationObject(AdviceArgs) method is invoked at the application's
runtime.

5. Now that you have created a complete CompositionAspect, it will need to be applied to the
target code. Add the aspect to the target code as an attribute. Provide the attribute with the
interface and concrete types that you wish to implement.

[GeneralCompose(typeof(IList), typeof(ArrayList))]
public class Fruit
{
}

6. After compiling your application you will find that the target code now implements the
assigned interfaces and exposes itself as a new instance of the concrete type you declared.
The next question that needs addressing is how you will interact with the target code using
that interace type.

To access the dynamically applied interface you must make use of a special PostSharp feature.
The Cast SourceType, TargetType (SourceType) method will allow you to safely cast the target
code to the interface type that you dynamically applied. Once that call has been done, you
are able to make use of the instace through the interface constructs.

[GeneralCompose(typeof(IList), typeof(ArrayList))]
public class Fruit
{

public Fruit()
{

IList list = Post.Cast<Fruit,IList>(this);
list.Add("apple");
list.Add("orange");
list.Add("banana");

}
}

PostSharp 3.0 Documentation

169

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Serialization_IActivator_CreateInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Post_Cast__2.htm

Introducing new custom attributes

5.1.7. Introducing Custom Attributes
Applying custom attributes to class members in C# is a powerful way to add metadata about those
members at compile time.

PostSharp provides the ability to create a custom attribute class which when applied to another class,
can iterate through those class members and automatically decorate them with custom attributes. This
can be useful for example, to automatically apply custom attributes or groups of custom attributes
when new class members are added, without having to remember to do it manually each time.

This topic contains the following sections.

• Introducing new custom attributes
• Copying existing custom attributes

In the following example, we’ll create an attribute decorator class which applies .NET’s DataContract-
Attribute to a class and DataMemberAttribute to members of a class at build time.

1. Start by creating a class called AutoDataContractAttribute which derives from TypeLevel-
Aspect. TypeLevelAspect transforms the class into an attribute which can be applied to other
classes. Also implement IAspectProvider which exposes the ProvideAspects(Object) method
for iterating on class members. ProvideAspects(Object) will be called for each member in the
target class and will contain the code for applying the attributes:

public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

}

PostSharp 3.0 Documentation

170

http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm

2. Implement the ProvideAspects(Object) method to cast the targetElement parameter to a
Type object. Note that this method will be called at build time. Since ProvideAspects(Object)
will be called for the class itself and for each member of the target class, the Type object can
be used for inspecting each member and making decisions about when and how to apply
custom attributes. In the following snippet, the implementation returns a new AspectInstance
for the Type containing a new DataContractAttribute and then iterates through each property
of the Type returning a new AspectInstance with the DataMemberAttribute for each. Note
that both the DataContractAttribute and DataMemberAttribute are both wrapped in Custom-
AttributeIntroductionAspect objects:

public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// This method is called at build time and should just provide other aspects.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(

new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =

new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

// Add the DataContract attribute to the type.
yield return new AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property.
foreach (PropertyInfo property in

targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))
{

if (property.CanWrite)
yield return new AspectInstance(property, introduceDataMemberAspect);

}
}

}

Note

Since the ProvideAspects(Object) method returns an IEnumerable, the yield keyword
should be used to return aspects for PostSharp to apply.

PostSharp 3.0 Documentation

171

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm
http://msdn2.microsoft.com/en-us/library/ms585243
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm
http://msdn2.microsoft.com/en-us/library/ms574795
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm

Copying existing custom attributes

3. Apply the DataContractAttribute class. In the following example we apply it to a Product

class where it will decorate Product with DataContractAttribute and each member with Data-
MemberAttribute:

[DataContractAttribute]
public class Product
{

public int ID { get; set; }

public string Name { get; set; }

public int RevisionNumber { get; set; }
}

See Example: Automatically Adding DataContract and DataMember Attributes at page 247 to learn
how to have the DataContractAttribute automatically applied to derived classes.

Another way to introduce attributes to class members is to copy them from another class. This is useful
for example, when distinct classes have members with the same names and are of the same types.
In this case, attributes can be defined in one class and then that class can be used to decorate other
similar classes with same attributes.

In the following snippet, Product’s ID and Name properties have both been modified to contain an
additional attribute from the DataAnnotations namespace – Editable, Display, and Required respec-
tively. Below Product is another class called ProductViewModel containing the same properties to
which we want to copy the attributes to:

class Product
{

[EditableAttribute(false)]
[Required]
public int Id { get; set; }

[Display(Name = "The product's name")]
[Required]
public string Name { get; set; }
public int RevisionNumber { get; set; }

}

class ProductViewModel
{

public int Id { get; set; }
public string Name { get; set; }
public int RevisionNumber { get; set; }

}

PostSharp 3.0 Documentation

172

http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://msdn2.microsoft.com/en-us/library/ms574795
http://msdn2.microsoft.com/en-us/library/ms585243

To copy the attributes from the properties of Product to the corresponding properties of
ProductViewModel, create an attribute class which can be applied to ProductViewModel to perform this
copy process:

1. Create a TypeLevelAspect which implements IAspectProvider. In the snippet below our class
is called CopyCustomAttributesFrom:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
}

2. Create a constructor to take in the class type from which the property attributes are to be
copied from. This class type will be used in the next step to enumerate its properties:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
private Type sourceType;

public CopyCustomAttributesFrom(Type srcType)
{

sourceType = srcType;
}

}

PostSharp 3.0 Documentation

173

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

3. Implement ProvideAspects(Object):

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{

// Details skipped.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetClassType = (Type)targetElement;

//loop thru each property in target
foreach (PropertyInfo targetPropertyInfo in targetClassType.GetProperties())
{

PropertyInfo sourcePropertyInfo = sourceType.GetProperty(targetPropertyInfo.Name);

//loop thru all custom attributes for the source property and copy to the target property
foreach (CustomAttributeData customAttributeData in sourcePropertyInfo.GetCustomAttributesData())
{

//filter out attributes that aren’t DataAnnotations
if (customAttributeData.AttributeType.Namespace.Equals("System.ComponentModel.DataAnnotations"))
{

CustomAttributeIntroductionAspect customAttributeIntroductionAspect =
new CustomAttributeIntroductionAspect(new ObjectConstruction(customAttributeData));

yield return new AspectInstance(targetPropertyInfo, customAttributeIntroductionAspect);
}

}

}
}

}

The ProvideAspects(Object) method iterates through each property of the target class and
then gets the corresponding property from the source class. It then iterates through all
custom attributes defined for the source property, copying each to the corresponding
property of the target class. ProvideAspects(Object) also filters out attributes which aren’t
from the [System.ComponentModel.DataAnnotations] namespace to demonstrate how
you may want to ignore some attributes during the copy process.

4. Decorate the ProductViewModel class with the CopyCustomAttributesFrom attribute,
specifying Product as the source type in the constructor. During compilation,
CopyCustomAttributesFrom’s ProvideAspects(Object) method will then perform the copy
process from Product to ProductViewModel:

[CopyCustomAttributesFrom(typeof(Product))]
class ProductViewModel
{

// Details skipped.
}

PostSharp 3.0 Documentation

174

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm

See Also

The following screenshot shows the Product and ProductViewModel classes reflected from an
assembly. Here we can see that the Editable and Display attributes were copied from Product to
ProductViewModel using CopyCustomAttributesAttribute at build time:

Note

It is not possible to delete or replace an existing custom attribute.

Reference

ProvideAspects(Object)
CopyCustomAttributesAttribute
DataContractAttribute
DataMemberAttribute
TypeLevelAspect
IAspectProvider
AspectInstance
CustomAttributeIntroductionAspect
DataAnnotations

5.1.8. Introducing Managed Resources
Embedding resources in .NET allows for data to be packaged together with your code in an assembly.
Resources are normally specified at design time and then embedded by the compiler during build
time.

PostSharp’s AssemblyLevelAspect adds additional flexibility by allowing you to programmatically add
resources at compile time. In doing so you can add logic and therefore flexibility in determining which
resources get embedded and how. For example, you could use this feature to encrypt a resource just
before embedding it into your assembly.

PostSharp 3.0 Documentation

175

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_CopyCustomAttributesAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_CopyCustomAttributesAttribute.htm
http://msdn2.microsoft.com/en-us/library/ms585243
http://msdn2.microsoft.com/en-us/library/ms574795
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm

Introducing resources

In the following example, we’ll create an assembly decorator which retrieves the current date and
time during compilation, and then stores that information in the current assembly as a resource. The
example will then show that that information can be retrieved from the assembly at runtime.

1. Start by creating a class called AddBuildInfoAspect which derives from AssemblyLevel-
Aspect. Also implement IAspectProvider which exposes the ProvideAspects(Object) method.
The ProvideAspects(Object) method will be called once by PostSharp, providing access to
assembly information and allowing for a resource to be programmatically added to the
assembly:

public sealed class AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
}

}

2. Implement the ProvideAspects(Object) method:

public sealed class AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Assembly assembly = (Assembly)targetElement;

byte[] userNameData = Encoding.ASCII.GetBytes(
assembly.FullName + " was compiled by: " + Environment.UserName);

ManagedResourceIntroductionAspect mria2 = new ManagedResourceIntroductionAspect("BuildUser", userNameData);

yield return new AspectInstance(assembly, mria2);
}

}

In this example the targetElement object passed in is cast to an Assembly object from which
the assembly named is retrieved. The code then gets the current date and time, concatenates
it with the assembly name, and then converts this string to a byte array. The byte array is
then stored along with a name for the data in PostSharp’s ManagedResourceIntroduction-
Aspect object, and returned via an AspectInstance. PostSharp then embeds the resource into
the current assembly.

3. Open your project’s AssemblyInfo.cs file and add a line to include the AddBuildInfoAspect

class:

[assembly:AddBuildInfoAspect]

PostSharp 3.0 Documentation

176

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectProvider_ProvideAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ManagedResourceIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ManagedResourceIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm

See Also

With this code in place the assembly will now embed the date and time as a resource into itself during
compilation.

The following code demonstrates how to retrieve the data at runtime:

class Program
{

static void Main(string[] args)
{

Assembly a = Assembly.GetExecutingAssembly();
Stream stream = a.GetManifestResourceStream("BuildUser");

byte[] bytesRead = new byte[stream.Length];
stream.Read(bytesRead, 0, (int)stream.Length);
string value = Encoding.ASCII.GetString(bytesRead);
Console.WriteLine(value);

}
}

This will display the following line in the console window:

Reference

AssemblyLevelAspect
IAspectProvider
ManagedResourceIntroductionAspect
AspectInstance

PostSharp 3.0 Documentation

177

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ManagedResourceIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AspectInstance.htm

Scope of Aspects

5.2. Understanding Aspect Lifetime and Scope
An original feature of PostSharp is that aspects are instantiated at compile time. Most other
frameworks instantiate aspects at run time.

Persistence of aspects between compile time and run time is achieved by serializing aspect instances
into a binary resource stored in the transformed assembly. Therefore, you should carefully mark all
aspect classes with the SerializableAttribute custom attribute, and distinguish between serialized fields
(typically initialized at compile-time and used at run-time) and non-serialized fields (typically used at
run-time only or at compile-time only).

Note

If your project targets Silverlight, Windows Phone, or the Compact Framework, aspects are
initialized at run-time and all compile-time steps are skipped.

This topic contains the following sections.

• Scope of Aspects
• Steps in the Lifetime of an Aspect Instance
• Examples

PostSharp offers two kinds of aspect scopes: static (per-class) and per-instance.

Statically Scoped Aspects

With statically-scoped aspects, PostSharp creates one aspect instance for each element of code to
which the aspect applies. The aspect instance is stored in a static field and is shared among all
instances of the target class.

In generic types, the aspect instance has not exactly the same scope as static fields. Consider the
following piece of code:

public class GenericClass<T>
{

static T f;

[Trace]
public void void SetField(T value) { f = value; }

}

public class Program
{

public static void Main()
{

GenericClass<int>.SetField(1);
GenericClass<long>.SetField(2);

PostSharp 3.0 Documentation

178

http://msdn2.microsoft.com/en-us/library/bcfsa90a

Steps in the Lifetime of an Aspect Instance

}
}

In this program, there are two instances of the static field f (one for GenericClass<int>, the second
for GenericClass<long>) but only a single instance of the aspect Trace.

Instance-Scoped Aspects

Instance-scoped aspect have the same scope (instance or static) as the element of code to which
they are applied. If an instance-scoped aspect is applied to a static member, it will have static scope.
However, if it is applied to an instance member or to a class, it will have the same lifetime as the class
instance: an aspect instance will be created whenever the class is instantiated, and the aspect instance
will be garbage-collectable at the same time as the class instance.

Instance-scoped aspects are implemented according to the “prototype pattern”: the aspect instance
created at compile time serves as a prototype, and is cloned at run-time whenever the target class is
instantiated.

Instance-scoped aspects must implement the interface IInstanceScopedAspect. Any aspect may be
made instance-scoped. The following code is a typical implementation of the interface IInstance-
ScopedAspect:

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

return this.MemberwiseClone();
}

object IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

The following table summarizes the different steps of

Phase Step Description

Compile-
Time

Instantiation PostSharp creates a new instance of the aspect for every target to which it applies. If the
aspect has been applied using a multicast custom attribute (MulticastAttribute), there
will be one aspect instance for each matching element of code.

When the aspect is given as a custom attribute or a multicast custom attribute, each
custom attribute instance is instantiated using the same mechanism as the Common
Language Runtime (CLR) does: PostSharp calls the appropriate constructor and sets the
properties and/or fields with the appropriate values. For instance, when you use the
construction [Trace(Category="FileManager")], PostSharp calls the default constructor
and the Category property setter.

Validation PostSharp validates the aspect by calling the CompileTimeValidate aspect method. See
Validating Aspect Usage at page 180 for details.

PostSharp 3.0 Documentation

179

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm

Examples

See Also

Phase Step Description

Compile-Time
Initialization

PostSharp invokes the CompileTimeInitialize aspect method. This method may, but
must not, be overridden by concrete aspect classes in order to perform some expensive
computations that do not depend on runtime conditions. The name of the element to
which the custom attribute instance is applied is always passed to this method.

Serialization After the aspect instances have all been created and initialized, PostSharp serializes them
into a binary stream. This stream is stored inside the new assembly as a managed
resource.

Run-
Time

Deserialization Before the first aspect must be executed, the aspect framework deserializes the binary
stream that has been stored in a managed resource during post-compilation.

At this point, there is still one aspect instance per target class.

Per-Class
Runtime
Initialization

Once all custom attribute instances are deserialized, we call for each of them the
RuntimeInitialize method. But this time we pass as an argument the real
System.Reflection object to which it is applied.

Per-Instance
Runtime
Initialization

This step applies only to instance-scoped aspects when they have been applied to an
instance member.

When a class is instantiated, the aspect framework creates an aspect instance by
invoking the method CreateInstance(AdviceArgs) of the prototype aspect instance. After
the new aspect instance has been set up, the aspect framework invokes the
RuntimeInitializeInstance .

Advice
Execution

Finally, advices (methods such as OnEntry(MethodExecutionArgs)) are executed.

Example: Raising an Event When the Object is Finalized at page 249

Other Resources

[5fafef23-0313-4eb9-9e4f-2ef80c616908]

5.3. Validating Aspect Usage
Some aspects make sense only on a specific subset of targets. For instance, an aspect may require
to be applied on non-static methods only. Another aspect may not be compatible with methods that
have ref or out parameters. If these constraints are not respected, these aspects will fail at runtime.
However, defects detected by the compiler are always cheaper to fix than ones detected later. So, as
the developer of an aspect, you should ensure that the build will fail if your aspect is being used on
an invalid target.

PostSharp 3.0 Documentation

180

http://msdn2.microsoft.com/en-us/library/136wx94f
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IInstanceScopedAspect_CreateInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IInstanceScopedAspect_RuntimeInitializeInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm

Using [MulticastAttributeUsage]

Implementing CompileTimeValidate

This topic contains the following sections.

• Using [MulticastAttributeUsage] at page 181
• Implementing CompileTimeValidate at page 181
• Using Message Sources at page 182
• Validating Attributes That Are Not Aspects
• Examples

The first level of protection is to configure multicasting properly with [MulticastAttributeUsage-
Attribute], as described in the article Adding Aspects Declaratively Using Attributes at page 114.
However, this approach can only filter based on characteristics that are supported by the multicasting
component.

The best way to validate aspect usage is to override the CompileTimeValidate(Object) method of your
aspect class.

In this example, we will show how an aspect RequirePermissionAttribute can require to be applied
only to methods of types that implement the ISecurable interface.

1. Inherit from one of the pre-built aspects. In this case OnMethodBoundaryAspect.

public class RequirePermissionAttribute: OnMethodBoundaryAspect

2. Override the CompileTimeValidate(Object) method.

public override bool CompileTimeValidate(MethodBase target)
{

3. Perfom a check to see if the target class implements the interface in question.

Type targetType = target.DeclaringType;
if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

}

PostSharp 3.0 Documentation

181

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm

Using Message Sources

4. If the target does not implement the interface you must signal the compilation process that
this target should not have the aspect applied to it. There are two ways to do this. The first
option is to throw an InvalidAnnotationException.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

throw new InvalidAnnotationException("The target type does not implement ISecurable.");
}

5. The second option is to emit an error message to the compilation process.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

Message.Write(SeverityType.Error, "Custom01",
"The target type does not implement ISecurable.", target);

return false;
}

Note

You may have noticed that CompileTimeValidate(Object) returns a boolean value. If you only
return false from this method the compilation process will silently ignore it. You must either
throw the InvalidAnnotationException or emit an error message to not silently ignore the false
return value.

Making use of the CompileTimeValidate(Object) method is a great way to encode custom rules for
applying aspects to target code. While it could be used to duplicate the functionality of the Attribute-
TargetTypeAttributes or AttributeTargetMemberAttributes, its real power is to go beyond those
filtering techniques. By using CompileTimeValidate(Object) you are able to filter aspect application in
any manner that you can interogate your codebase using reflection.

If you plan to raise many messages, you may prefer to define your own MessageSource. A Message-
Source is backed by a managed resource mapping error codes to error messages.

In order to create your own MessageSource, you should:

1. Create an implementation of the IMessageDispenser. Typically, implement the GetMessage
method using a large switch statement. To each message will correspond a string

PostSharp 3.0 Documentation

182

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_InvalidAnnotationException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_InvalidAnnotationException.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetTypeAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributeTargetMemberAttributes.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_Aspect_CompileTimeValidate.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IMessageDispenser.htm

2. Create a static instance of the MessageSource class for your message source.

For instance, the following code defines a message source based on a message dispenser:

internal class ArchitectureMessageSource : MessageSource
{

public static readonly ArchitectureMessageSource Instance = new ArchitectureMessageSource();

private ArchitectureMessageSource() : base("PostSharp.Architecture", new Dispenser())
{
}

private class Dispenser : MessageDispenser
{

public Dispenser() : base("CUS")
{
}

protected override string GetMessage(int number)
{

switch (number)
{

case 1:
return "Interface {0} cannot be implemented by {1} because of the [InternalImplement] constraint.";

case 2:
return "{0} {1} cannot be referenced from {2} {3} because of the [ComponentInternal] constraint.";

case 3:
return "Cannot use [ComponentInternal] on {0} {1} because the {0} is not internal.";

case 4:
return "Cannot use [Internal] on {0} {1} because the {0} is not public.";

default:
return null;

}
}

}
}

3. Then you can use a convenient set of methods on your MessageSource object:

MyMessageSource.Instance.Write(classType, SeverityType.Error, "CUS001", new object[] { interfaceType, classType });

Note

You can also emit information and warning messages.

Tip

Use ReflectionSearch to perform complex queries over System.Reflection.

PostSharp 3.0 Documentation

183

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_ReflectionSearch.htm

Validating Attributes That Are Not Aspects

Examples

See Also

You can validate any attribute derived from Attribute by implementing the interface IValidable-
Annotation.

Example: Dispatching a Method Execution to the GUI Thread at page 241

Reference

MethodLevelAspectCompileTimeValidate(MethodBase)
TypeLevelAspectCompileTimeValidate(Type)
FieldLevelAspectCompileTimeValidate(FieldInfo)
LocationLevelAspectCompileTimeValidate(LocationInfo)
EventLevelAspectCompileTimeValidate(EventInfo)
AssemblyLevelAspectCompileTimeValidate(_Assembly)
IValidableAnnotation
MessageSource
Message
MessageWrite

5.4. Initializing Aspects
As explained in the section Understanding Aspect Lifetime and Scope at page 178, a different aspect
instance is associated with every element of code it is applied to. Aspect instances are created at
compile time, serialized into the assembly as a managed resource, and deserialized at runtime. If the
aspect is instance-scoped, instances are duplicated from the prototype and initialized.

Therefore, you can override one of the following three methods to handle aspect initializations:

1. The method CompileTimeInitialize is invoked at compile time, and should initialize only
serializable fields of the aspect, so that the value of these fields will be available at run time.
The argument of this method is the System.Reflection object representing the element of
code to which this aspect instance has been applied. Therefore, this method can already
perform expensive computations that depend only on metadata.

2. The method RuntimeInitialize is invoked at run time. Note that the aspect constructor
itself is not invoked at run time. Therefore, overriding RuntimeInitialize is the only way
to perform initialization tasks at run time. If the aspect is instance-scoped, this method is
executed on the prototype instance.

PostSharp 3.0 Documentation

184

http://msdn2.microsoft.com/en-us/library/e8kc3626
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IValidableAnnotation.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IValidableAnnotation.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IValidableAnnotation.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_Message.htm
http://msdn2.microsoft.com/en-us/library/136wx94f

See Also

3. The methods IInstanceScopedAspect CreateInstance(AdviceArgs) and IInstanceScoped-
Aspect RuntimeInitializeInstance is invoked only for instance-scoped aspects. They initialize
the aspect instance itself, as RuntimeInitialize was invoked on the prototype.

Tip

Initializing an aspect at compile time is useful when you need to compute a difficult result that
depends only on metadata -- that is, it does not depend on any runtime information. An example
is to build the strings that need to be printed by a tracing aspect. It is rather expensive to build
strings that contain the full type name, the method name, and eventually placeholders for generic
parameters and parameters. However, all required pieces of information are available at compile
time. So compile time is the best moment to compute these strings.

5.5. Developing Composite Aspects
PostSharp offers two approaches to aspect-oriented development. The first, as explained in section
Developing Simple Aspects at page 141, is very similar to object-oriented programming. It requires the
aspect developer to override virtual methods or implement interfaces. This approach is very efficient
for simple problems.

One way to grow in complexity with the first approach is to use the interface IAspectProvider (see
Adding Aspects Dynamically at page 201). However, even this technique has its limitations.

This chapter documents the second approach, closer to the classic paradigm of aspect-oriented
programming introduced by AspectJ. This approach allows developers to implement more complex
design patterns using aspects. We call aspects developed with this approach “composite aspects”,
because they are freely composed of different elements named “advices” and “pointcuts”.

An advice is anything that adds a behaviour or a structural element to an element of code. For
instance, introducing a method into a class, intercepting a property setter, or catching exceptions, are
advices.

A pointcut is a function returning a set of elements of code to which advices apply. For instance, a
function returning the set of properties annotated with the custom attribute DataMember is a pointcut.

Classes supporting advices and pointcuts are available in the namespace PostSharp.Aspects.Advices.

A composite aspect generally generally derives from a class that does not define its own advices:
AssemblyLevelAspect, TypeLevelAspect, InstanceLevelAspect, MethodLevelAspect, LocationLevel-
Aspect or EventLevelAspect. As such, these aspects have no functionality. You can add functionalities
by adding advices to the aspect.

Advices are covered in the following sections:

PostSharp 3.0 Documentation

185

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IInstanceScopedAspect_CreateInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IInstanceScopedAspect_RuntimeInitializeInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IInstanceScopedAspect_RuntimeInitializeInstance.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Advices.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventLevelAspect.htm

How to Add a Behavior to an Existing Member

Section Description

Adding Behaviors to
Existing Members at
page 186

Advices with equivalent functionality as OnMethodBoundaryAspect,
MethodInterceptionAspect, LocationInterceptionAspect, and EventInterceptionAspect.

[interface-introduction] Make the aspect introduce an interface into the target class. The interface is
implemented by the aspect itself.

Accessing Members of
the Target Class at
page 198

Make the aspect introduce a new method, property or event into the target class. The
new member is implemented by the aspect itself. Conversely, the aspect can import a
member of the target so that it can invoke it through a delegate.

5.5.1. Adding Behaviors to Existing Members
In order to add new behaviours to (i.e. modify) existing members (methods, fields, properties, or
events), two questions must be addressed:

• What transformation should be performed? The answer lays in the advice. This advice is a
method of your advice, annotated with a custom attribute determining in which situation the
method should be invoked. You can freely choose the name of the method, but its signature
must match the one expected by the advice type.

• Where should it be performed, i.e. on which elements on code? The answer lays in the
pointcut, another custom attribute expected on the method providing the transformation.

This topic contains the following sections.

• How to Add a Behavior to an Existing Member
• Advice Kinds at page 187
• Pointcuts Kinds at page 188
• Grouping Advices at page 189

1. Start with an empty aspect class deriving AssemblyLevelAspect, TypeLevelAspect, Instance-
LevelAspect, MethodLevelAspect, LocationLevelAspect or EventLevelAspect. Mark it as serial-
izable.

2. Choose an advice type in the list below. For instance: OnMethodEntryAdvice.

3. Create a method. The signature of this method should match exactly the signature matched
by this advice type.

4. Annotate this method with a custom attribute of the advice type you chose. For instance:
[OnMethodEntryAdvice].

5. Choose a pointcut type in the list below. For instance: SelfPointcut. Annotate the advice
method with that custom attribute. For instance: [SelfPointcut].

PostSharp 3.0 Documentation

186

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_AssemblyLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_TypeLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodEntryAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_SelfPointcut.htm

Advice Kinds

Example

The following code shows a simple tracing aspect implemented with an advice and a pointcut. This
aspect is exactly equivalent to a class derived from OnMethodBoundaryAspect where only the method
OnEntry(MethodExecutionArgs) has been overwritten. The example is a method-level aspect and Self-
Pointcut means that the advice applies to the same target as the method itself.

using System;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;

namespace Samples6
{

[Serializable]
public sealed class TraceAttribute : MethodLevelAspect
{

[OnMethodEntryAdvice, SelfPointcut]
public void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("Entering {0}.{1}", args.Method.DeclaringType.Name, args.Method.Name);
}

}
}

The following table lists all types of advices that can transform existing members. Note that all these
advices are available as a part of a simple aspect (for instance OnMethodEntryAdvice corresponds
to OnMethodBoundaryAspect OnEntry(MethodExecutionArgs). For a complete documentation of the
advice, see the documentation of the corresponding simple aspect.

Advice Type Targets Description

OnMethodEntryAdvice

OnMethodSuccessAdvice

OnMethodExceptionAdvice

OnMethodExitAdvice

Methods These advices are equivalent to the advices of the aspect
OnMethodBoundaryAspect. The target method to be wrapped by a
try/catch/finally construct.

OnMethodInvokeAdvice Methods This advice is equivalent to the aspect MethodInterceptionAspect.
Calls to the target methods are replaced to calls to the advice.

OnLocationGetValueAdvice

OnLocationSetValueAdvice

Fields,
Properties

These advices are equivalent to the advices of the aspect
LocationInterceptionAspect. Fields are changed into properties, and
calls to the accessors are replaced to calls to the proper advice.

LocationValidationAdvice Fields,
Properties,
Parameters

This advice is equivalent to the ValidateValue(T, String,
LocationKind)LocationInterceptionAspect method of the
ILocationValidationAspect T aspect interface. It validates values
assigned to their targets and throws an exception in case of error.

PostSharp 3.0 Documentation

187

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_SelfPointcut.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_SelfPointcut.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodEntryAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnMethodBoundaryAspect_OnEntry.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodEntryAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodSuccessAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodExceptionAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodExitAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodInvokeAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnLocationGetValueAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnLocationSetValueAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_LocationValidationAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_ILocationValidationAspect_1_ValidateValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_ILocationValidationAspect_1_ValidateValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationValidationAspect_1.htm

Pointcuts Kinds

Advice Type Targets Description

OnEventAddHandlerAdvice

OnEventRemoveHandlerAdvice

OnEventInvokeHandlerAdvice

Events These advices are equivalent to the advices of the aspect
EventInterceptionAspect. Calls to add and remove semantics are
replaced by calls to advices. When the event is fired, the
OnEventInvokeHandler is invoked for each handler, instead of the
handler itself.

Pointcuts determine where the transformation provided by the advice should be applied.

From a logical point of view, pointcuts are functions that return a set of code elements. A pointcut can
only select elements of code that are inside the target of the aspect itself. For instance, if an aspect has
been applied to a class A, the pointcut can select the class A itself, members of A, but different classes
or members of different classes.

Multicast Pointcut

The pointcut type MulticastPointcut allows to express a pointcut in a purely declarative way, using
a single custom attribute. It works in a very similar way as MulticastAttribute (see Adding Aspects
Declaratively Using Attributes at page 114) the kind of code elements being selected, their name and
attributes can be filtered using properties of this custom attribute.

For instance, the following code applies the OnPropertySet advice to all non-abstract properties of the
class to which the aspect has been applied.

[OnLocationSetValueAdvice,
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

Method Pointcut

The pointcut type MethodPointcut allows to express a pointcut imperatively, using a C# or Visual Basic
method. The argument of the custom attribute should contain the name of the method implementing
the pointcut.

The only parameter of this method should be type-compatible with the kind of elements of code
to which the aspect applies. The return value of the pointcut method should be a collection
(IEnumerable T) of objects that are type-compatible with the kind of elements of code to which the
advice applies.

For instance, the following code applies the OnPropertySet advice to all writable properties that are
not annotated with the IgnorePropertyChanged custom attribute.

private IEnumerable<PropertyInfo> SelectProperties(Type type)
{

PostSharp 3.0 Documentation

188

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnEventAddHandlerAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnEventRemoveHandlerAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnEventInvokeHandlerAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MulticastPointcut.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MethodPointcut.htm

Grouping Advices

const BindingFlags bindingFlags = BindingFlags.Instance |
BindingFlags.DeclaredOnly | BindingFlags.Public;

return from property
in type.GetProperties(bindingFlags)

where property.CanWrite && !property.IsDefined(typeof(IgnorePropertyChanged))
select property;

}

[OnLocationSetValueAdvice, MethodPointcut("SelectProperties")]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

As you can see in this example, pointcut methods can use the power of LINQ to query System.
Reflection.

Self Pointcut

The pointcut type SelfPointcut simply selects the target of the aspect.

The table of above shows advice types grouped in families. Advices of different type but of the same
family can be grouped into a single logical filter, so they are considered as single transformation.

Why Grouping Advices

Consider for instance three advices of the family OnMethodBoundaryAspect: OnMethodEntryAdvice,
OnMethodSuccessAdvice and OnMethodExceptionAdvice. The way how they are ordered is
important, as it results in different generation of try/catch/finally block.

The following table compares advice ordering strategies. In the left column, advices are executed in
the order: OnEntry, OnExit, OnException. In the right column, advices are grouped together.

PostSharp 3.0 Documentation

189

http://msdn2.microsoft.com/en-us/library/136wx94f
http://msdn2.microsoft.com/en-us/library/136wx94f
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_SelfPointcut.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodEntryAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodSuccessAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodExceptionAdvice.htm

void Method()
{

try
{

OnEntry();

try
{

// Original method body.
}
finally
{

OnExit();
}

}
catch
{

OnException();
throw;

}
}

void Method()
{

OnEntry();

try
{

// Original method body.
}
catch
{

OnException();
throw;

}
finally
{

OnExit();
}

}

The code in the left column may make sense in some situations, but it is not consistent with the code
generated by OnMethodBoundaryAspect. Note that the advices may have been ordered differently:
the order OnEntry, OnException, OnExit would have generated the same code as in the right column.
However, you would have had to use custom attributes to specify order relationships between advices
(see Ordering Advices at page 205). Grouping advices is a much easier way to ensure consistency.

Additionally, when advices of the OnMethodBoundaryAspect family are grouped together, it will be
possible to share information among them using MethodExecutionTag.

The reasons to group advices of the family LocationInterceptionAspect and EventInterceptionAspect
are similar: advices grouped together behave consistently as a single filter (see Understanding
Interception Aspects at page 206).

How to Group Advices

To group several advices into a single filter:

1. Choose a master advice. The choice of the master advice is arbitrary. All other advices of the
group are called slave advices.

2. Annotate the master advice method with one advice custom attribute (see Available Advices
at page 187 and one pointcut custom attribute (see Available Pointcuts at page 188), as
usually.

3. Annotate all slave advices with one advice custom attribute. Set the property Master of the
custom attribute to the name of the master advice method.

4. Do not specify any pointcut on slave advice methods.

PostSharp 3.0 Documentation

190

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_GroupingAdvice_Master.htm

See Also

The following code shows how two advices of type OnMethodEntryAdvice and OnMethodExitAdvice
can be grouped into a single filter:

[OnMethodEntryAdvice, MulticastPointcut]
public void OnEntry(MethodExecutionArgs args)
{
}

[OnMethodExitAdvice(Master="OnEntry")]
public void OnExit(MethodExecutionArgs args)
{
}

Reference

PostSharp.Aspects.Advices

5.5.2. Introducing Interfaces, Methods, Properties and
Events
Some design patterns require you to add properties, methods or interfaces to your target code. If
many components in your codebase need to represent the same construct, repetitively adding those
constructs flies in the face of the DRY (Don't Repeat Yourself) principle. So how can you add code
constructs to your target code without it becoming repetitive?

PostSharp offers a number of ways for you to add different code constructs to your codebase in a
controlled and consistent manner. Let's take a look at those techniques.

This topic contains the following sections.

• Introducing interfaces at page 192
• Introducing methods at page 194
• Introducing properties at page 195
• Controlling the visibility of introduced members at page 196
• Overriding members or interfaces at page 197

PostSharp 3.0 Documentation

191

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodEntryAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_OnMethodExitAdvice.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Advices.htm

Introducing interfaces

One of the common situations that you will encounter is the need to implement a specific interface
on a large number of classes. This may be INotifyPropertyChanged, IDisposable, IEquatable or some
custom interface that you have created. If the implementation of the interface is consistent across all
of the targets then there is no reason that we shouldn't centralize its implementation. So how do we
go about adding that interface to a class at compile time?

1. Let's add the IIdentifiable interface to the target code.

public interface IIdentifiable
{

Guid Id { get; }
}

2. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute
[SerializableAttribute].

Note

Use [PSerializableAttribute] instead of [SerializableAttribute] if your project targets
Silverlight, Windows Phone, Windows Store, or runs with partial trust.

3. The key to adding an interface to target code is that you must implement that interface
on your aspect. Let's implement the [Microsoft.TeamFoundation.TestManagement.Client.
IIdentifiable] interface on our aspect. It's this implementation of the interface that will be
added to the target code, so anything that you include in method or property bodies will be
added to the target code as you have declared it in the aspect.

[Serializable]
public class IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; private set; }
}

4. Add the IntroduceInterfaceAttribute attribute to the aspect and include the interface type
that you want to add to the target code.

[IntroduceInterface(typeof(IIdentifiable))]
[Serializable]
public class IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; private set; }
}

PostSharp 3.0 Documentation

192

http://msdn2.microsoft.com/en-us/library/ms133020
http://msdn2.microsoft.com/en-us/library/aax125c9
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceInterfaceAttribute.htm

5. Finally you need to declare where this aspect should be applied to the codebase. In this
example let's add it, as an attribute, to a class.

[IdentifiableAspect]
public class Customer
{

public string Name { get; set; }
public string Address { get; set; }

}

6. After compilation you can decompile the target code and see that the interface has been
added to it.

As you can see in the decompiled code, interfaces are implemented explicitly on the target code. It is
also possible to introduce public members to target code. This is covered below.

Note

Interfaces and members introduced by PostSharp are not visible at compile time. To access the
dynamically applied interface you must make use of a special PostSharp feature; the Cast Source-
Type, TargetType (SourceType) pseudo-operator. The Cast SourceType, TargetType (SourceType)
method will allow you to safely cast the target code to the interface type that was dynamically
applied. Once that call has been done, you are able to make use of the instace through the
interface constructs.

There is no way to access a dynamically-inserted method, property or event, other than through
reflection or the dynamic keyword.

Note

When you start adding code constucts to your target code, you need to determine how to
initialize them correctly. Because these code construct are not available for you to work with
at compile time you need to figure out how to deal with them some other way. To see more
about initializing code constructs that you introduce via aspects, please see the section Initializing
Aspects at page 184.

PostSharp 3.0 Documentation

193

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Post_Cast__2.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Post_Cast__2.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Post_Cast__2.htm

Introducing methods

The introduction of methods to your target code is very similar to introducing interfaces. The biggest
difference is that you will be introducing code at a much more granular level.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute
[SerializableAttribute].

2. Add to the aspect the method you want to introduce to the target code.

[Serializable]
public class OurCustomAspect : InstanceLevelAspect
{

public void TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

}

Note

The method that you declare must be marked as public. If it is not you will see an error
at compile time.

3. Decorate the method with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public void TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

4. Finally, declare where you want this aspect to be applied in the codebase.

[OurCustomAspect]
public class Customer
{

public string Name { get; set; }
}

PostSharp 3.0 Documentation

194

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm

Introducing properties

5. After compilation you can decompile the target code and see that the method has been
added.

The introduction of properties is almost exactly the same as the introduction of methods. Like
introducing a method you will use the IntroduceMemberAttribute attribute. Let's take a look at the
details.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute
[SerializableAttribute].

2. Add the property you want to introduce to the aspect.

[Serializable]
public class OurCustomAspect : InstanceLevelAspect
{

public string Name { get; set; }
}

Note

The property that you declare must be marked as public. If it is not you will see a
compiler error.

3. Decorate the property with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public string Name { get; set; }

PostSharp 3.0 Documentation

195

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm

Controlling the visibility of introduced members

4. Add the aspect attribute to the target code where the aspect should be applied.

[OurCustomAspect]
public class Customer
{

}

5. After you have compiled the codebase you can decompile the target code and see that the
property has been added.

As noted for both the introduction of methods and properties, the code being introduced must
be declared as public. This is needed to ensure that PostSharp can function. If you look closely at
the decompiled targets you will see that the introduced members are actually calling the methods/
properties that were declared on the aspect. If the method/property on the aspect is not public, the
target code will not be able to call it as it should.

Note

It is possible to introduce properties to target code, but it is not possible to introduce fields
to your target code. The reason is that all members are introduced by delegation: the actual
implementation of the member always resides in the aspect.

You may not want the introduced member to have public visibility once it has been introduced to the
target code. PostSharp allows you to control the visibility of the introduced member through the use

PostSharp 3.0 Documentation

196

Overriding members or interfaces

See Also

of the Visibility property on the aspect. To declare that a member should be introduced with private
visibility, all you have to do is declare it as such.

[IntroduceMember(Visibility = Visibility.Private)]
public string Name { get; set; }

You have the ability to introduce members with a number of different visibilities including public,
private, assembly (internal in C#) and others. You also have the ability to mark an introduction so that
it will be declared as virtual if you set the IsVirtual property to true.

[IntroduceMember(Visibility = Visibility.Private, IsVirtual = true)]
public string Name { get; set; }

One thing you need to be aware of is the situation where you are introducing a member that may
already exist in the scope of the target code. Perhaps the method you are trying to introduce is
available on the target code through inheritance. It's possible that the method is explicity declared on
the target code as well. The introduction of a member via an aspect needs to take these situations into
account. PostSharp allows you to take these situations into account through the use of the Override-
Action property.

The OverrideAction property allows you to declare a rule for how the introduction of a member or
interface should behave if the member or interface is already implemented on the target code. This
property allows you to declare rules such as Fail (any conflict situation will throw a compile time error),
Ignore (continue on without trying to introduce the member/interface), OverrideOrFail or OverrideOr-
Ignore. It's important to understand how you want to apply your introduced members/interfaces in
situations where that member/interface may already exist.

[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
public string Name { get; set; }

Reference

CreateImplementationObject(AdviceArgs)
CompositionAspect
Cast SourceType, TargetType (SourceType)
INotifyPropertyChanged
IDisposable
InstanceLevelAspect
PSerializableAttribute
SerializableAttribute
IntroduceInterfaceAttribute
IntroduceMemberAttribute

PostSharp 3.0 Documentation

197

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_Visibility.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_IsVirtual.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Post_Cast__2.htm
http://msdn2.microsoft.com/en-us/library/ms133020
http://msdn2.microsoft.com/en-us/library/aax125c9
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceInterfaceAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm

Importing Members of the Target Class

Visibility
IsVirtual
OverrideAction
Fail
Ignore
OverrideOrFail
OverrideOrIgnore
GetPublicInterfaces(Type)
CreateImplementationObject(AdviceArgs)
CreateInstance(Type, ActivatorSecurityToken)

5.5.3. Accessing Members of the Target Class
PostSharp makes it possible to import a delegate of a target class method, property or event into the
aspect class, so that the aspect can invoke this member.

These mechanisms allow developers to encapsulate more design patterns using aspects.

This topic contains the following sections.

• Importing Members of the Target Class
• Interactions Between Several Member Introductions and Imports
• Examples

Importing a member into an aspect allows this aspect to invoke the member. An aspect can import
methods, properties, or fields.

PostSharp 3.0 Documentation

198

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_Visibility.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_IsVirtual.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_MemberOverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_GetPublicInterfaces.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_CompositionAspect_CreateImplementationObject.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Serialization_IActivator_CreateInstance.htm

Interactions Between Several Member Introductions and Imports

To import a member of the target type into the aspect class:

1. Define a field into the aspect class, of the following type:

Member
Kind

Field Type

Method A typed Delegate, typically one of the variants of Action or Func TResult . The delegate
signature should exactly match the signature of the imported method.

Property Property TValue , where the generic argument is the type of the property.

Collection
Indexer

Property TValue, TIndex , where the first generic argument is the type of the property value
and the second is the type of the index parameter. Indexers with more than one parameter
are not supported.

Event Event TDelegate , where the generic argument is the type of the event delegate (for instance
EventHandler).

2. Make this field public. The field cannot be static.

3. Add the custom attribute ImportMemberAttribute to the field. As the constructor argument,
pass the name of the member to be imported.

At runtime, the field is set to a delegate of the imported member. Properties and events are
imported as set of delegates (Property TValue Get, Property TValue Set; Event TDelegate Add,
Event TDelegate Remove). These delegates can be invoked by the aspect as any delegate.

The property ImportMemberAttribute IsRequired determines what happens if the member could not
be found in the target class or in its parent. By default, the field will simply have the null value if it
could not be bound to a member. If the property IsRequired is set to true, a compile-time error will
be emitted.

Although member introduction and import may seem simple advices at first sight, things become
more complex when the several advices try to introduce or import the same member. PostSharp
handles these situations in a robust and predictable way. For this purpose, it is primordial to process
classes, aspects and advices in a consistent order.

PostSharp enforces the following order:

1. Base classes are processed first, derived classes after. Therefore, when a class is being
processed, all parent classes have already been fully processed.

2. Aspects targetting the same class are sorted (see Coping with Several Aspects on the Same
Target at page 201) and executed.

PostSharp 3.0 Documentation

199

http://msdn2.microsoft.com/en-us/library/y22acf51
http://msdn2.microsoft.com/en-us/library/bb534741
http://msdn2.microsoft.com/en-us/library/bb534960
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_Property_1.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_Property_2.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_Event_1.htm
http://msdn2.microsoft.com/en-us/library/xhb70ccc
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_Property_1_Get.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_Property_1_Set.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_Event_1_Add.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_Event_1_Remove.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_IsRequired.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_IsRequired.htm

3. Advices of the same aspect are sorted and executed in the following order:

a. Member imports which have the property ImportMemberAttribute Order set to
BeforeIntroductions.

b. Member introductions.
c. Members imports which have the property ImportMemberAttribute Order set to

AfterIntroductions (this is the default value).

Based on this well-defined order, the advices behave as follow:

Advice Precondition Behavior

ImportMemberAttribute No member,
or private
member
defined in a
parent class.

Error if ImportMemberAttribute IsRequired is true, ignored otherwise
(by default).

Non-virtual
member
defined.

Member imported.

Virtual
member
defined.

If ImportMemberAttribute Order is BeforeIntroductions, the
overridden member is imported. This similar to calling a method with
the base prefix in C#. Otherwise (and by default), the member is
dynamically resolved using the virtual table of the target object.

IntroduceMemberAttribute No member,
or private
member
defined in a
parent class.

Member introduced.

Non-virtual
member
defined in a
parent class

Ignored if the property IntroduceMemberAttribute OverrideAction is
Ignore or OverrideOrIgnore, otherwise fail (by default).

Virtual
member
defined in a
parent class

Introduce a new override method if the property
IntroduceMemberAttribute OverrideAction is OverrideOrFail or
OverrideOrIgnore, ignore if the property is Ignore, otherwise fail (by
default).

Member
defined in the
target class
(virtual or not)

Fail by default or if the property
IntroduceMemberAttribute OverrideAction is Fail.

Otherwise:

1. Move the previous method body to a new method so that
the previous implementation can be imported by advices
ImportMemberAttribute with the property Order set to
BeforeIntroductions.

2. Override the method with the imported method.

PostSharp 3.0 Documentation

200

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_Order.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_Order.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_IsRequired.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_Order.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_IntroduceMemberAttribute_OverrideAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Advices_ImportMemberAttribute_Order.htm

Examples

See Also

See Also

Example: Raising an Event When the Object is Finalized at page 249

Reference

IntroduceMemberAttribute
ImportMemberAttribute

5.5.4. Adding Aspects Dynamically
Additionally to providing advices, an aspect can provide other aspects dynamically using IAspect-
Provider. This allows aspect developers to address situations where it is not possible to add aspects
declaratively (using custom attributes) to the source code; aspects can be provided on the basis of
a complex analysis of the target assembly using System.Reflection, or by reading an XML file, for
instance.

For details about IAspectProvider, see Adding Aspects Programmatically using IAspectProvider at
page 137.

Reference

IAspectProvider

5.6. Coping with Several Aspects on the Same
Target
As the team learns aspect-oriented programming and starts adding more aspect to projects, chances
raise that several aspects are added to the same element of code. This could be a major source of
troubles if PostSharp did not provide a robust framework to detect and prevent conflicts between
aspects:

• Most aspects need to be ordered. For instance, an authorization aspect must be executed
before a caching aspect.

• Even if some aspects don't care to be ordered, it's good to have them applied in predictable
order. Otherwise, some code that works today may be broken tomorrow -- just because
aspects were applied in a different order.

• Some aspects conflict; they cannot be together on the same aspect, or not in a given order.
For instance, it does not make sense to persist an object using two different aspects: one
would persist to the database, the other to the registry.

PostSharp 3.0 Documentation

201

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://msdn2.microsoft.com/en-us/library/136wx94f
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

Aspect Dependency Custom Attributes

• Some aspects require other aspects to be applied. For instance, an aspect changing the
mouse pointer to an hourglass requires the method to execute asynchronously, otherwise the
pointer shape will never be updated.

PostSharp addresses these issues by making it possible to add dependencies between aspects. The
aspect dependency framework is implemented in the namespace PostSharp.Aspects.Dependencies.

Note

The aspect dependency framework is not related to the notion of dependency injection.

You can express dependencies of an aspect by annotating the aspect class with custom attributes
derived from the type AspectDependencyAttribute. Several derived types are available; every type
matches other aspects according to different criteria.

Attribute Type Description

AspectTypeDependencyAttribute This custom attribute expresses a dependency with a well-known aspect class.

AspectRoleDependencyAttribute This custom attribute expresses a dependency with any aspect classes enrolled
in a given role. Its dual is ProvideAspectRoleAttribute: this custom attribute
enrolls an aspect class into a role. A role is simply a string. Whenever possible,
consider using one of the roles defined in the class StandardRoles.

AspectEffectDependencyAttribute This custom attribute expresses a dependency with any aspect that has a specific
effect on the source code or the control flow. Effects are represented as a string,
whose valid values are listed in the type ProvideAspectRoleAttribute. Effects are
provisioned by the aspect weaver on the basis of a rough analysis of what the
aspect may do; aspect developers cannot assign new effects to aspects.
However, they can waive effects by using the custom attribute
WaiveAspectEffectAttribute. For instance, an aspect developer can specify that a
trace attribute has no effect at all; this aspect will commute with any other
aspect (see below).

Every of these custom attributes have similar structure and members. The first parameter of their
constructor, of type AspectDependencyAction, determines the kind of dependency relationship added
between the current aspect and the aspects matched by the custom attribute.

PostSharp supports the following kinds of relationships:

Action Description

Order The dependency expresses an order relationship. The second constructor of the custom attribute, of type
AspectDependencyPosition (with values Before or After), must be specified. The custom attributes
determine the position of the current aspect with respect to matched aspects.

Require The dependency expresses a requirement. PostSharp will issue a compile-time error if the requirement is
not satisfied for any target of the current aspect. The second constructor of the custom attribute, of type
AspectDependencyPosition, is optional. If specified, an aspect matching the dependency should be
present before or after the current aspect.

PostSharp 3.0 Documentation

202

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Dependencies.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectTypeDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectRoleDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_ProvideAspectRoleAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_StandardRoles.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectEffectDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_ProvideAspectRoleAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_WaiveAspectEffectAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAction.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyPosition.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyPosition.htm

Examples

Action Description

Conflict The dependency expresses a conflict. PostSharp will issue a compile-time error if any aspect matching the
dependency rule is present on any target of the current aspect. The second constructor of the custom
attribute, of type AspectDependencyPosition, is optional. If specified, an error is issued only if a matching
aspect is present before or after the current aspect.

Commute The dependency specifies that the current aspect is commutable with any matching aspect. When
aspects are commutable, PostSharp does not issue any warning if they are not strongly ordered.

Custom attribute types and values of the enumeration AspectDependencyAction are orthogonal; they
can be freely combined.

Using role-based dependencies

The following code shows how three aspects can be ordered without having explicit knowledge of
each other. Each aspect provides a different role, and defines dependencies with respect to other roles.

[ProvideAspectRole(StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before, "UI")]
public sealed class AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

[ProvideAspectRole(StandardRoles.ExceptionHandling)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, "UI")]
public sealed class ExceptionDialogAttribute : OnExceptionAspect
{

// Details skipped
}

[ProvideAspectRole("UI")]
public sealed class StatusTextAttribute : OnMethodBoundaryAspect
{

// Details skipped
}

Using effect-based dependencies

The following code shows how to protect an authorization aspect to be executed after an aspect
which may change the control flow and skipping the execution of the method, such as a caching
aspect. Then, it shows how the aspectAsyncAttribute can opt out from this effect, because the aspect
developer knows that does aspect does not skip the execution of the method, but only defers it.

[AspectEffectDependency(AspectDependencyAction.Conflict, AspectDependencyPosition.Before,
StandardEffects.ChangeControlFlow)]

public sealed class AuthorizationAttribute : OnMethodBoundaryAspect
{

// Details skipped.
}

PostSharp 3.0 Documentation

203

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyPosition.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAction.htm

Deferring Ordering to Aspect Users

Adding Dependencies to Third-Party Aspects

See Also

[WaiveAspectEffect(StandardEffects.ChangeControlFlow)]
public sealed class AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

By adding dependencies to the aspect class, the aspect developer specifies the order of execution of
aspects in a fully static way. The same order is used for every element of code to which aspects apply.
While this behavior is most of time desirable, there may be situations where we want to defer ordering
to users of our aspects.

Aspect users can influence the order of execution of an aspect by setting the aspect property Aspect-
Priority, typically when using the aspect custom attribute (the same property is available in the config-
uration object as AspectConfiguration AspectPriority, see Configuring Aspects at page 234).

Setting the AspectPriority results to an aspect in adding an ordering dependency between this aspect
and all other aspects where the same property has been set. Therefore, aspect priorities complement,
and do not replace, other ordering dependencies. The aspect developer may specify vital aspect
dependencies (that is, under-specify aspect ordering), and let it to the aspect user to complete the
ordering with priorities.

Caution

Do not confuse the property AspectPriority with AttributePriority. The latter determines in which
several custom attributes of the same time are processed by the MulticastAttribute engine. The
first determines in which order the aspects are executed at run time.

If you are using aspects provided by several third-party vendors who don't know about each other,
you may need to solve conflicts on your own.

You can do that by adding any custom attribute derived from AspectDependencyAttribute at
assembly level, and use the property TargetType to specify to which aspect class the dependency
applies.

Here is an example:

[assembly: AspectTypeDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before,
typeof(Vendor1.TraceAspect), TargetType = typeof(Vendor2.ExceptionHandlingAspect)]

Reference

PostSharp.Aspects.Dependencies

PostSharp 3.0 Documentation

204

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Aspect_AspectPriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Aspect_AspectPriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Configuration_AspectConfiguration_AspectPriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Aspect_AspectPriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Aspect_AspectPriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_MulticastAttribute_AttributePriority.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Dependencies_AspectDependencyAttribute_TargetType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Dependencies.htm

Ordering Advices of the Same Aspect

See Also

5.6.1. Ordering Advices
The section Coping with Several Aspects on the Same Target at page 201 talks in terms of aspect
dependencies and aspect ordering. Most of what has been said there is also valid to advices. When
we talk of the order of execution of aspects, we actually mean the execution of advices ("aspects"
themselves, “stricto sensu”, are never executed).

Dependencies defined at aspect level implicitly apply to all advices. When developing a composite
aspect (see Developing Composite Aspects at page 185), it is possible to add dependencies directly
to advice methods by annotating them with custom attributes of the namespace PostSharp.Aspects.
Dependencies.

Note that all advices provided by an aspect are ordered in a single block. Suppose that a method is
the target of advices Aspect1.MethodA, Aspect1.MethodB and Aspect2.MethodC. The next table shows
valid and invalid orders:

Valid Orders Invalid Orders

Aspect1.MethodA, Aspect1.MethodB, Aspect2.MethodC Aspect1.MethodA, Aspect2.MethodC, Aspect1.MethodB

Aspect1.MethodB, Aspect1.MethodA, Aspect2.MethodC Aspect1.MethodB, Aspect2.MethodC, Aspect1.MethodA

Aspect2.MethodC, Aspect1.MethodA, Aspect1.MethodB

Aspect2.MethodC, Aspect1.MethodB, Aspect1.MethodA

Advices of the same aspect can be used using any custom attribute derived from AspectDependency-
Attribute.

Because advices of the same aspect instance are necessarily ordered in block, it is appropriate to
specify dependencies between aspect classes extensively, and specify ordering of advices only in the
scope of the current aspect instance. The most appropriate dependency custom attribute for this
purpose is AdviceDependencyAttribute, which accepts the name of the advice method as a parameter.

Reference

AdviceDependencyAttribute

5.7. Targeting Windows Phone, Windows Store
or Silverlight
Starting from version 3, PostSharp supports the following platforms without any limitation:

• Silverlight 4, 5

PostSharp 3.0 Documentation

205

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Dependencies.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Dependencies.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AspectDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AdviceDependencyAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Dependencies_AdviceDependencyAttribute.htm

Chains of Invocation

• Windows Phone 7, 8
• Windows Store 8

These platforms are supported through the Portable Class Library (PCL). The PCL version of PostSharp.
dll has version numbers ending in 3 (for instance, 3.0.20.3), whereas the .NET versions end in 9 (for
instance, 3.0.20.9). NuGet should automatically add the right version of the library to your project.

When using the portable version of PostSharp, you should use the portable serializer instead of the .
NET BinaryFormatter:

• Use PSerializableAttribute instead of SerializableAttribute.
• Use PNonSerializedAttribute instead of NonSerializedAttribute.

For more information about aspect serialization, see section Understanding Aspect Serialization at
page 208

5.8. Understanding Interception Aspects
Aspect types MethodInterceptionAspect, LocationInterceptionAspect and EventInterceptionAspect
are all based on the same principle: the aspect is invoked instead of the enhanced semantic. The aspect
gets access to the intercepted semantic through methods prefixed by Proceed, or by other methods.

Things become more complex when several interception aspects are applied to the same element
of code. Consider a method enhanced by three aspects A, B and C. When aspect A calls the method
Proceed , it will actually invoke the method OnInvoke(MethodInterceptionArgs) of aspect B. Similarly,
aspect B will invoke aspect C, and aspect C will eventually invoke the original method.

Interception aspects form a chain on invocation where every aspect instance is a node in the chain,
and the intercepted member is the last node.

An interception aspect can only invoke the next node in the chain. There is no way an aspect can
invoke another node, or can access directly the intercepted member. This design ensures that aspects
behave in a robust and consistent way in all situations.

Aspect types LocationInterceptionAspect and EventInterceptionAspect have several semantics (Get
and Set for LocationInterceptionAspect; Add, Remove and Invoke for EventInterceptionAspect). All
advices of the same aspect instance (one advice per semantic) logically belong to the same node
in the chain of invocation. Therefore, when the implementation of the advice LocationInterception-
Aspect OnSetValue(LocationInterceptionArgs) invokes the method LocationInterceptionArgs Get-
CurrentValue , it actually invokes the Get semantic of the next node in the chain. If the aspect had
used PropertyInfoGetValue(Object) to get the value (as was usual in PostSharp 1.0), it would have
invoked the first node in the chain!

PostSharp 3.0 Documentation

206

http://msdn2.microsoft.com/en-us/library/y50tb888
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PNonSerializedAttribute.htm
http://msdn2.microsoft.com/en-us/library/z951x24h
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodInterceptionArgs_Proceed.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodInterceptionAspect_OnInvoke.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionAspect_OnSetValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_GetCurrentValue.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_LocationInterceptionArgs_GetCurrentValue.htm

Aspects as Filters: a Disciplined Approach to Aspect-Oriented
Programming

In its early days, aspect-oriented programming (AOP) has been perceived as a dangerous technology.
Aspects allowed to do anything with a program. Although AOP has been designed to improve the
readability and maintainability of source code, it could actually have the opposite effect.

As goes the saying, with a sharp tool, one must pay greater attention.

PostSharp was designed to respect one of the most fundamental principles of software engineering:
encapsulation. Encapsulation means the condition of being enclosed, as in a capsule. In object-
oriented programming, the primary capsule is the class itself. Outside code communicates with the
capsule through well-defined ports: public members. Outside code cannot modify what's inside the
capsule. A well-designed capsule should check the validity of messages it receives or it sends -
something called precondition and postcondition checking. The second level of encapsulation is the
method: even inside a class, code should be designed so that the implementation of a method does
not need to care about the implementation of another method.

Of course, it is possible to ignore the rules of encapsulation. But it would most probably result in
poorly readable and maintainable code.

PostSharp actually allows you to break the first capsule: you can add advices to private members of a
class. But it stops there: you cannot break the capsule of a method. Instead, you can enclose a method
into a new capsule analog to a filter: the advice. When a method is enhanced by an advice, outside
code seeking access to this method must go through its advice.

When a method is enhanced by several advices, every advice constitutes a filter that encloses not only
the method, but all advices with lower priority.

Methods have a single semantic: Invoke. Properties, fields and events have many multiple semantics.
These members can be considered as a single capsule, and their semantics as different ports in the
capsule.

Note

Things can become more complex. Consider a property with a getter and a setter. The property
is enhanced by an aspect of type LocationInterceptionAspect. The property setter is enhanced
by a MethodInterceptionAspect with lower priority. From a logical point of view, the property
is considered as a single capsule with two ports. The capsule is enclosed by two filters, one
for each aspect. The aspect LocationInterceptionAspect filters both ports. However, Method-
InterceptionAspect only filters the Set port. If the LocationInterceptionAspect invokes the Get
semantic, it will be directed to the property getter, because there is no filter between the advice
and the semantic. However, when the same aspect invokes the Set semantic, it will be directed
to LocationInterceptionAspect as this filters lays in the way.

Note

The Invoke semantic of EventInterceptionAspect is executed in invert order. Indeed, the message
originates inside the capsule is emitted outside. For all other semantics, the message always
comes from outside and is directed to the capsule.

PostSharp 3.0 Documentation

207

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm

Aspect Bindings

See Also

When an advice is invoked, it receives an interface to the next node in the chain of invocation: an
aspect binding. Every aspect type has its corresponding binding interface, exposed on a property of
the advice argument object.

Aspect Type Binding Interface Exposed On

MethodInterceptionAspect IMethodBinding MethodInterceptionArgs Binding

LocationInterceptionAspect ILocationBinding LocationInterceptionArgs Binding

EventInterceptionAspect IEventBinding EventInterceptionArgs Binding

Binding objects are singletons. They are fully thread-safe and reentrant. They can be invoked in any
situation. This contrasts with advice arguments, which may be shared among different advices and
should not be used once the advice gave over control to the next node in the chain invocation.

Note

As objects of type Arguments may be shared among different advices, some of which may modify
the arguments, it may be safe to clone the object before the advice gives over control.

Note

For run-time performance reasons, PostSharp does not access binding classes through their
interface, but directly invokes their implementation. Implementation classes of binding interfaces
are considered an implementation detail and should not be referred to from user code.

Reference

LocationInterceptionAspect
MethodInterceptionAspect
EventInterceptionAspect

5.9. Understanding Aspect Serialization
As explained in section Understanding Aspect Lifetime and Scope at page 178, aspect are first instan-
tiated at build time by the weaver, are then initialized by the CompileTimeInitialize method, and
serialized and stored in the assembly as a managed resource. Aspects are then deserialized at runtime,
before being executed.

Because of the aspect life cycle, aspect classes must be made serializable as described in this section.

PostSharp 3.0 Documentation

208

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IMethodBinding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodInterceptionArgs_Binding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_ILocationBinding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_LocationInterceptionArgs_Binding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IEventBinding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_EventInterceptionArgs_Binding.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Arguments.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm

Default serialization strategy

Aspects without serialization

This topic contains the following sections.

• Default serialization strategy at page 209
• Aspects without serialization at page 209

Typically, aspects can be made serializable by adding a custom attribute to the class, which causes all
fields of the class to be serialized. Fields that do not need to be serialized must be annotated with
an opt-out custom attribute. PostSharp chooses the serialization strategy according these custom
attributes. The serialization strategy is implemented in classes derived from the abstract class Aspect-
Serializer according to the following table.

Target platform Making the class
serializable

Excluding fields Aspect serializer

.NET Framework with
full trust

SerializableAttribute NonSerializedAttribute BinaryAspectSerializer, backed by
BinaryFormatter

Any platform PSerializableAttribute PNonSerializedAttribute PortableAspectSerializer, backed by
PortableFormatter

In some situations, serializing and deserializing the aspect may be a suboptimal solution. In case
aspect field values are a pure function of constructor arguments and properties, it may be more
efficient to emit code that instantiates these aspects at runtime instead of serializing-deserializing
them. This is the case, typically, if the aspect does not implement the CompileTimeInitialize method.

In this situation, it is better to use a different serializer: MsilAspectSerializer.

Note

MsilAspectSerializer is actually not a serializer. When you use this implementation instead of a
real serializer, the aspect is not serialized, but the weaver generates MSIL instructions to build
the aspect instance at runtime, by calling the aspect class constructor and by setting its fields and
properties.

You can specify which serializer should be used for a specific aspect class by setting the property
AspectConfiguration SerializerType of the configuration of this aspect class or instance.

See section Configuring Aspects at page 234 for details.

The following code shows how to choose the serializer type for an OnMethodBoundaryAspect:

[OnMethodBoundaryAspectConfiguration(SerializerType=typeof(MsilAspectSerializer))]
public sealed MyAspect : OnMethodBoundaryAspect

PostSharp 3.0 Documentation

209

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_AspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_AspectSerializer.htm
http://msdn2.microsoft.com/en-us/library/bcfsa90a
http://msdn2.microsoft.com/en-us/library/z951x24h
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_BinaryAspectSerializer.htm
http://msdn2.microsoft.com/en-us/library/y50tb888
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PSerializableAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PNonSerializedAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_PortableAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Serialization_PortableFormatter.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_MsilAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_MsilAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Configuration_AspectConfiguration_SerializerType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm

See Also
Reference

AspectSerializer
BinaryAspectSerializer
PortableAspectSerializer
MsilAspectSerializer
AspectConfiguration SerializerType

5.10. Testing and Debugging Aspects
Aspects should be tested as any piece of code. However, testing techniques for aspects differ from
testing techniques for normal class libraries because of a number of reasons:

• Aspects instantiation is not user-controlled.
• Aspects partially execute at build time.
• Aspects can emit build errors. Logic that emits build errors should be tested too.

These characteristics are no obstacle to proper testing of aspects.

This chapter contains the following sections:

• Writing Simple Tests at page 210 explains how to test the behavior of an aspect.
• Testing that an Aspect has been Applied at page 212 shows how to test that an aspect has

been applied to the expected set of code artifacts.
• Consuming Dependencies from the Aspect at page 213 describes several ways for aspects to

consume dependencies from dependency-injection containers and service locators.
• Attaching a Debugger at Build Time at page 232 explains how to debug build-time logic.

5.10.1. Writing Simple Tests
When designing a test strategy for aspects, it is fundamental to understand that aspects cannot be
used in isolation. They are always used in the context of the code artefact to which it has been applied.
Therefore, when writing an aspect, two kinds of test artifacts must be written:

• Test target code to which the aspect will be applied.
• Test invocation code that invokes the target code and verifies that the combination of the

aspect and the target code exhibits the intended behavior.

PostSharp 3.0 Documentation

210

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_AspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_BinaryAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_PortableAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_MsilAspectSerializer.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Configuration_AspectConfiguration_SerializerType.htm

Achieving large test coverage

Example: testing a caching aspect

As with other code, you have to test the aspect with input context that varies enough to produce a
large code coverage.

In the case of aspects, the input context is composed of the following items:

• Arguments of the aspect itself, i.e. constructor arguments and property values. If the aspect
behavior depends of aspect arguments, high code coverage of the aspect requires varying
aspect arguments.

• Target code can be considered as conceptually being a part of the input arguments of the
aspect. For instance, if an aspect contains logic that depends on the method being static or
non-static, you should test the aspect against both static and non-static methods.

• Arguments of the target code can affect the run-time behavior of the aspect. For instance, a
buggy aspects may incorrectly handle null arguments.

The following example demonstrates how to test the caching aspect illustrated in section Caching
the Result of a Method at page 239. High code coverage is achieved by varying the target code and
testing with null and non-null parameters.

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Samples
{

[TestClass]
public class TestCacheAspect
{

private static int invocations;

// Instance method without parameters

[TestMethod]
public void TestInstanceMethodWithoutParameter()
{

int call1 = this.InstanceMethodWithoutParameter();
int call2 = this.InstanceMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]
private int InstanceMethodWithoutParameter()
{

return invocations++;
}

// Static method without parameters

PostSharp 3.0 Documentation

211

Why to test that the aspect has been property applied?

[TestMethod]
public void TestStaticMethodWithoutParameter()
{

int call1 = StaticMethodWithoutParameter();
int call2 = StaticMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]
private static int StaticMethodWithoutParameter()
{

return invocations++;
}

// Instance method with parameters

[TestMethod]
public void TestInstanceMethodWithParameter()
{

int call1a = this.InstanceMethodWithParameter("foo");
int call2a = this.InstanceMethodWithParameter(null);
int call1b = this.InstanceMethodWithParameter("foo");
int call2b = this.InstanceMethodWithParameter(null);

Assert.AreEqual(call1a, call1b);
Assert.AreEqual(call2a, call2b);
Assert.AreNotEqual(call1a, call2a);

}

[Cache]
private int InstanceMethodWithParameter(string param)
{

return invocations++;
}

}
}

5.10.2. Testing that an Aspect has been Applied
In the previous section, we have seen how to test the aspect behavior itself. Now, let's see how we can
test that the aspect has been applied to the expected set of targets. This can also be called testing the
pointcut.

You may need to test whether an aspect has been applied to specific targets for one of the following
reasons:

• The aspect is applied using non-trivial regular expressions with MulticastAttribute.
• The aspect is silently filtered out using CompileTimeValidate .

PostSharp 3.0 Documentation

212

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttribute.htm

Testing that the aspect behavior is exhibited

Testing that the aspect custom attribute is present

Parsing the PostSharp symbol file

• The aspect is applied using an IAspectProvider.

The most obvious way to test that the aspect has been applied on to an element of code is to execute
that code and ensure that the code actually exhibits the aspect behavior. This approach does not differ
from the one described in section Writing Simple Tests at page 210.

You can check that an aspect has been applied to a target by reflecting the custom attributes present
on this element of code.

However, custom attributes representing aspects are stripped by default. If you want PostSharp
to emit custom attributes, follow instructions of section Reflecting Aspect Instances at Runtime at
page 129.

Note

Aspects added by IAspectProvider are not represented by custom attributes, so their presence
cannot be tested by this approach.

PostSharp generates a symbol file named bin\Debug\MyAssembly.psssym, where MyAssembly is the
name of the assembly. In theory, you could use this file to determine which elements of code have
been modified by aspects in your project.

Caution

The PostSharp symbol file format is undocumented and unsupported. It means that PostSharp
support team cannot answer questions related to this file format.

5.10.3. Consuming Dependencies from the Aspect
Aspects, as other components, may have dependencies to other application services. Aspects may be
bound to the abstract interface to this service, and may need to resolve the dependency at runtime.

However, two reasons prevent us from the following approaches that are usual with dependency
injection containers:

• Aspects are instantiated at build time, and dependency-injection containers only exist at run-
time.

• Aspects typically have a static scope. Unless they implement the IInstanceScopedAspect,
aspect instances are stored in static fields, even when applied to instance members.

PostSharp 3.0 Documentation

213

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm

Example: testable logging aspect with a global MEF service container

These characteristics are not an obstacle to using service containers, but different patterns must be
followed.

This section presents several ways to consume dependencies from an aspect:

• Using a Global Composition Container at page 214
• Using a Global Service Locator at page 217
• Using Dynamic Dependency Resolution at page 220
• Using Contextual Dependency Resolution at page 223
• Importing Dependencies from the Target Object at page 226

5.10.3.1. Using a Global Composition Container

Although the aspect cannot be instantiated by the dependency injection container, it is possible to
initialize the aspect from an ambient container at runtime. An ambient container is one that is exposed
as a static member and that is global to the whole application.

Dependency injection containers typically offer methods to initialize objects that have been instan-
tiated externally. For instance, the Managed Extensibility Framework offers the SatisfyImportsOnce
method.

The dependency injection method can be invoked from the RuntimeInitialize method.

Note

User code has no control over the time when and the thread on which an aspect is initialized.
Therefore, using ThreadStaticAttribute to make the container local to the current thread is not a
reliable approach.

Important

The service container must be initialized before the execution of any class that is enhanced by
the aspect. It means that it is not possible to use the aspect on test classes themselves. To relax
this constraint, it is possible to initialize the dependency lazily, when the first advice is hit.

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;

namespace DependencyResolution.GlobalServiceContainer
{

PostSharp 3.0 Documentation

214

http://msdn2.microsoft.com/en-us/library/h3811ycd

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceInjector
{

private static CompositionContainer container;

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static void BuildObject(object o)
{

if (container == null)
throw new InvalidOperationException();

container.SatisfyImportsOnce(o);
}

}

[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{

[Import] private ILogger logger;

public override void RuntimeInitialize(MethodBase method)
{

AspectServiceInjector.BuildObject(this);
}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

// The static constructor of LogAspect is called before the static constructor of the type
// containing target methods. This is why we cannot use the aspect in the Program class.
Foo.LoggedMethod();

}
}

internal class Foo
{

[LogAspect]
public static void LoggedMethod()
{

PostSharp 3.0 Documentation

215

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceContainer.Test
{

[TestClass]
public class TestLogAspect
{

static TestLogAspect()
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
public void TestMethod()
{

TestLogger.Clear();
new TargetClass().TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

private class TargetClass
{

[LogAspect]
public void TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

PostSharp 3.0 Documentation

216

Example: testable aspect with a global MEF service locator

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

5.10.3.2. Using a Global Service Locator

If all aspect instances are using the same global dependency injection container, it is likely that
dependencies of all instances will resolve to the same service implementation. Therefore, storing
dependencies in an instance field may be a waste of memory, especially for aspects that are applied
to a very high number of code elements.

Alternatively, dependencies can be stored in static fields and initialized in the aspect static constructor.

Tip

Use the PostSharpEnvironment IsPostSharpRunning property to make sure that this part of the
static constructor is executed at runtime only, when PostSharp is not running.

In this case, dependency injection method such as SatisfyImportsOnce cannot be used. Instead, the
container must be used as a service locator. For instance, MEF exposes the method ExportProvider-
GetExport .

Important

The service locator must be initialized before the execution of any class that is enhanced by the
aspect. It means that it is not possible to use the aspect on the entry-point class (Program or
App, typically). To relax this constraint, it is possible to initialize the dependency on demand, for
instance using the Lazy construct.

The following source code demonstrates how to call a global service locator from the aspect static
constructor.

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;

PostSharp 3.0 Documentation

217

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Extensibility_PostSharpEnvironment_IsPostSharpRunning.htm

using PostSharp.Aspects;
using PostSharp.Extensibility;

namespace DependencyResolution.GlobalServiceLocator
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static Lazy<T> GetService<T>() where T : class
{

return new Lazy<T>(GetServiceImpl<T>);
}

private static T GetServiceImpl<T>()
{

if (container == null)
throw new InvalidOperationException();

return container.GetExport<T>().Value;
}

}

[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{

private static readonly Lazy<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)
{

logger = AspectServiceLocator.GetService<ILogger>();
}

}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

PostSharp 3.0 Documentation

218

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceLocator.Test
{

[TestClass]
public class TestLogAspect
{

static TestLogAspect()
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
public void TestMethod()
{

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
private void TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

PostSharp 3.0 Documentation

219

Example: testable logging aspect with a global MEF service container
with dynamic resolution

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

5.10.3.3. Using Dynamic Dependency Resolution

Both previous approaches have a static dependency resolution strategy: it cannot be changed over
time. Therefore, these strategies could be unsuitable in cases where several tests need different
configurations of the dependency container.

A possible solution is to resolve dependencies dynamically each time they are needed, and not only
at aspect initialization. Althought this solution is ideal for the sake of testing, it may be too inefficient
for production. Therefore, the solution would still need to provide dependency caching for production
mode. Caching would neutralize the dynamic characteristics of dependency resolution.

This solution would be based on the following elements:

1. The service locator can be initialized in two modes: production (the resolution strategy is
immutable) and testing (the resolution strategy can be modified).

2. The service locator returns a delegate (Func<T>, where T is the dependency type), instead of
the dependency itself (T or Lazy<T>).

3. The aspect calls the service locator during aspect initialization and stores the delegate.
4. The aspect calls the delegate at runtime.

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;

PostSharp 3.0 Documentation

220

using PostSharp.Extensibility;

namespace DependencyResolution.Dynamic
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;
private static bool isCacheable;

public static void Initialize(ComposablePartCatalog catalog, bool isCacheable)
{

if (AspectServiceLocator.isCacheable && container != null)
throw new InvalidOperationException();

container = new CompositionContainer(catalog);
AspectServiceLocator.isCacheable = isCacheable;

}

public static Func<T> GetService<T>() where T : class
{

if (isCacheable)
{

return () => new Lazy<T>(GetServiceImpl<T>).Value;
}
else
{

return GetServiceImpl<T>;
}

}

private static T GetServiceImpl<T>()
{

if (container == null)
throw new InvalidOperationException();

return container.GetExport<T>().Value;
}

}

[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{

private static readonly Func<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)
{

logger = AspectServiceLocator.GetService<ILogger>();
}

}

PostSharp 3.0 Documentation

221

public override void OnEntry(MethodExecutionArgs args)
{

logger().Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)), true);

LoggedMethod();
}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Dynamic.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

// The ServiceLocator can be initialized for each test.
AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)), false);

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

PostSharp 3.0 Documentation

222

Example: testable logging aspect with contextual dependency
resolution

[LogAspect]
private void TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

5.10.3.4. Using Contextual Dependency Resolution

The dependency resolution strategy does not necessarily need to resolve to the same service
implementation for all occurrences of the dependency. It is possible to design a strategy that depends
on the context. For instance, the service locator could accept the aspect type and the target element of
code as parameters. Test code could configure the service locator to resolve dependencies to specific
implementations for a given context.

Evaluating context-sensitive rules maybe CPU-intensive, but it needs to be done only during testing.
In production mode, dependency resolution can be delegated to a global service catalogue.

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Reflection;
using PostSharp.Aspects;

PostSharp 3.0 Documentation

223

using PostSharp.Extensibility;

namespace DependencyResolution.Contextual
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;
private static HashSet<object> rules = new HashSet<object>();

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static Lazy<T> GetService<T>(Type aspectType, MemberInfo targetElement) where T : class
{

return new Lazy<T>(() => GetServiceImpl<T>(aspectType, targetElement));
}

private static T GetServiceImpl<T>(Type aspectType, MemberInfo targetElement) where T : class
{

// The rule implementation is naive but this is for testing purpose only.
foreach (object rule in rules)
{

DependencyRule<T> typedRule = rule as DependencyRule<T>;
if (typedRule == null) continue;

T service = typedRule.Rule(aspectType, targetElement);
if (service != null) return service;

}

if (container == null)
throw new InvalidOperationException();

// Fallback to the container, which should be the default and production behavior.
return container.GetExport<T>().Value;

}

public static IDisposable AddRule<T>(Func<Type, MemberInfo, T> rule)
{

DependencyRule<T> dependencyRule = new DependencyRule<T>(rule);
rules.Add(dependencyRule);
return dependencyRule;

}

private class DependencyRule<T> : IDisposable
{

public DependencyRule(Func<Type, MemberInfo, T> rule)
{

this.Rule = rule;
}

PostSharp 3.0 Documentation

224

public Func<Type, MemberInfo, T> Rule { get; private set; }

public void Dispose()
{

rules.Remove(this);
}

}
}

[Serializable]
public class LogAspect : OnMethodBoundaryAspect
{

private Lazy<ILogger> logger;

public override void RuntimeInitialize(MethodBase method)
{

logger = AspectServiceLocator.GetService<ILogger>(this.GetType(), method);
}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

using System;
using System.Text;

PostSharp 3.0 Documentation

225

using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Contextual.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

// The ServiceLocator can be initialized for each test.
using (

AspectServiceLocator.AddRule<ILogger>(
(type, member) =>
type == typeof (LogAspect) && member.Name == "TargetMethod" ? new TestLogger() : null)

)
{

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}
}

[LogAspect]
public void TargetMethod()
{
}

}

internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

5.10.3.5. Importing Dependencies from the Target Object

The principal reason why aspects are believed to be difficult to test is that they are statically scoped
by default, i.e. aspect objects are stored in static fields. However, any aspect can be made instance-

PostSharp 3.0 Documentation

226

Example: testable logging aspect that consumes the dependency from
the target object

scoped if it implements the IInstanceScopedAspect interface. See Understanding Aspect Lifetime and
Scope at page 178 for more information about aspect scopes.

Instance-scoped aspects can consume dependencies from the objects to which they are applied. They
can also add dependencies to the target objects.

For instance, an aspect can consume a service ILogger using the following procedure:

To consume a service from an instance-scoped aspect:

1. Add a public property of name Logger and type ILogger to the aspect and add the Introduce-
MemberAttribute custom attribute. This will cause the aspect to add a property to the target
class. Use the parameter MemberOverrideAction.Ignore to ignore the property if it already
exists in the target type of if it has been added by another aspect.

2. Add two custom attributes ImportAttribute and CopyCustomAttributesAttribute to the
Logger property. This will cause the aspect to add the [Import] custom attribute to the Logger

property added to the target class.

3. Add a public field of name LoggerProperty and type Property<ILogger> to the aspect
class and add the ImportMemberAttribute custom attribute to this field, with "Logger" as
parameter. This will allow the aspect to read the Logger property even if it has been defined
from outside the aspect.

4. The aspect can now consume the dependency by calling this.LoggerProperty.Get().

The procedure is illustrated in the next example.

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.ComponentModel.Design;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Extensibility;
using PostSharp.Reflection;

namespace DependencyResolution.InstanceScoped
{

public interface ILogger
{

void Log(string message);
}

PostSharp 3.0 Documentation

227

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://msdn2.microsoft.com/en-us/library/dd287324
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_CopyCustomAttributesAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm

[Serializable]
public class LogAspect : OnMethodBoundaryAspect, IInstanceScopedAspect
{

[IntroduceMember(Visibility = Visibility.Family, OverrideAction = MemberOverrideAction.Ignore)]
[CopyCustomAttributes(typeof (ImportAttribute))]
[Import(typeof(ILogger))]
public ILogger Logger { get; set; }

[ImportMember("Logger", IsRequired = true)]
public Property<ILogger> LoggerProperty;

public override void OnEntry(MethodExecutionArgs args)
{

this.LoggerProperty.Get().Log("OnEntry");
}

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

return this.MemberwiseClone();
}

void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

}

[Export(typeof (MyServiceImpl))]
internal class MyServiceImpl
{

[LogAspect]
public void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

internal class Program
{

private static void Main(string[] args)
{

AssemblyCatalog catalog = new AssemblyCatalog(typeof (Program).Assembly);
CompositionContainer container = new CompositionContainer(catalog);
MyServiceImpl service = container.GetExport<MyServiceImpl>().Value;
service.LoggedMethod();

}
}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);

PostSharp 3.0 Documentation

228

}
}

}

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.InstanceScoped.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

TypeCatalog catalog = new TypeCatalog(typeof (TestLogger), typeof (TestImpl));
CompositionContainer container = new CompositionContainer(catalog);
TestImpl service = container.GetExport<TestImpl>().Value;
TestLogger.Clear();
service.TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[Export(typeof (TestImpl))]
private class TestImpl
{

[LogAspect]
public void TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

PostSharp 3.0 Documentation

229

Creating an aspect unit test project

}
}

5.10.4. Testing Build-Time Logic
Testing build-time logic of aspects has specific challenges:

• Aspects can emit errors and warnings, which cannot be tested using a run-time testing
framework. We need a mechanism to test error messages themselves.

• When a project contains a large number of test cases (which are all compiled at the same
time), it is difficult to isolate one specific case when the debugger is attached to the build
process (see Attaching a Debugger at Build Time at page 232). We need a mechanism to run
the build process on a single test case.

Therefore, we built a test framework specifically for the purpose of testing aspects.

This topic contains the following sections.

• Creating an aspect unit test project at page 230
• Executing a single test at page 231
• Executing all tests from a directory at page 231
• Executing all tests in the project directory at page 231
• Test that messages are emitted at page 231
• Allow unsafe code at page 231
• Creating a reference assembly at page 232

To create an aspect unit test project:

1. Create a console project and add all required references to it.

2. Add PostSharp to this project

3. Edit the project file using a text editor. The project file must import PostSharp.BuildTests.
targets before Microsoft.CSharp.targets (download7). File PostSharp.targets also needs to be
included (which is the case if the PostSharp NuGet package is added to the project).

4. Implement each test case as a standalone file having its own Program class and Main method.
To avoid naming conflicts, every file should have a distinct namespace.

7. http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

PostSharp 3.0 Documentation

230

http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets
http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

Executing a single test

Executing all tests from a directory

Executing all tests in the project directory

Test that messages are emitted

Allow unsafe code

A test is considered successful in the following situations:

• the test compiles using the C# or VB compiler, and
• the test compiles using PostSharp without any unexpected message (see below), and
• the output exe is valid according PEVERIFY, and

• the output exe executes successfully and returns the exit code 0,

This default behavior can be altered by test directives, as described below.

Execute the following line from the command prompt:

msbuild /t:TestOne /p:Source=MyFile.cs

Execute the following line from the command prompt:

msbuild /t:Test /p:SourceDir=MyDirectory

Execute the following line from the command prompt:

msbuild /t:Test

If the test is expected to emit a message (error, warning, information), insert the text
@ExpectedMessage(PS0001) in the test file as a comment line.

If this directive is present, the test will be valid if and only if all expected messages, and no other, have
been emitted.

To enable unsafe code and disable verification by PEVERIFY, insert the text @Unsafe in the test file as
a comment line.

PostSharp 3.0 Documentation

231

Creating a reference assembly

In case that a test requires a dependency assembly (typically, for tests that require two assemblies,
for instance testing aspect inheritance that cross assembly boundaries), you can create a second file
named MyTest.Dependency.cs, if the first file is named MyTest.cs. This will create an assembly MyTest.
Dependency.dll, and main test will have a reference to this assembly.

5.10.5. Attaching a Debugger at Build Time
It may seem unusual to debug compile-time logic, but like any process, it is perfectly legal and even
simple to debug the build process!

Basically, what you will do is to attach a debugger to the PostSharp process. If you use the standard
MSBuild targets for PostSharp, define the constant PostSharpAttachDebugger=True.

The trick is easier to explain when you have compile-time logic (your aspect, for instance) and the
transformed assembly in different Visual Studio projects.

Suppose you have your aspects logic MyAspects.csproj and unit tests (i.e. the code to be transformed)
in MyAspects.Test.csproj. The easiest way to debug MyAspects.csproj is to:

1. Open MyAspects.csproj and MyAspects.Test.csproj in two different instances of Visual
Studio.

2. Open the Visual Studio Command Prompt and go to the directory containing
MyAspects.Test.csproj.

3. Build MyAspects.csproj using Visual Studio as usually .

4. From the command prompt, type:

msbuild MyAspects.Test.csproj /T:Rebuild /P:PostSharpAttachDebugger=True

5. The build process will hit a break point. When it happens, attach the instance of
MyAspects.csproj Visual Studio. Set up break points in your code and continue the program
execution.

5.11. Advanced

PostSharp 3.0 Documentation

232

Initializing Aspects Manually

5.11.1. Coping with Custom Object Serializers
Some aspects need to be initialized when a new instance of the class to which they are applied is
created. For instance, instance-scoped aspect must be cloned from the prototype; members imported
into the through ImportMemberAttribute must be bound to aspect fields.

PostSharp enhances every constructor of every enhanced class so that aspects are properly initialized.

However, it is possible to create new instances of classes by bypassing the constructor. This happens,
for instance, when classes are deserialized by the BinaryFormatter or the DataContractSerializer. These
formatters use the method FormatterServicesGetUnitializedObject(Type) to create new instances,
but this method bypasses all constructors.

PostSharp implements a workaround for the deserializers BinaryFormatter and DataContractSerializer:
it creates or modifies a method annotated by the custom attribute OnDeserializingAttribute, so that
aspects are initialized properly.

However, if you are using a custom deserializer, or for any reason create instances using the method
the method FormatterServicesGetUnitializedObject(Type), you will have to initialize aspects
manually.

There are many possible ways to initialize an aspect from user code.

By Defining a Method InitializeAspects

You can define in your classes (typically in one of the root classes of your class hierarchy) a method
with the following name and signature:

protected virtual void InitializeAspects();

When PostSharp discovers this method, it will insert its own initialization logic at the beginning of the
InitializeAspects method. The original logic is not deleted. This method can safely have an empty
implementation.

The following constraints apply:

• The method should be virtual unless the class is sealed.

• The method should be protected or public, unless the class is internal.

For instance, the following class would enable aspects (applied on this class or on derived classes) to
be initialized after deserialization (note that PostSharp automatically generates this code for Binary-
Formatter and DataContractSerializer; you only need to do it manually for a custom serializer).

[DataContract]
public abstract class BaseClass
{

protected virtual void InitializeAspects()

PostSharp 3.0 Documentation

233

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://msdn2.microsoft.com/en-us/library/y50tb888
http://msdn2.microsoft.com/en-us/library/ms405768
http://msdn2.microsoft.com/en-us/library/y50tb888
http://msdn2.microsoft.com/en-us/library/ms405768
http://msdn2.microsoft.com/en-us/library/86d80276
http://msdn2.microsoft.com/en-us/library/y50tb888
http://msdn2.microsoft.com/en-us/library/y50tb888
http://msdn2.microsoft.com/en-us/library/ms405768

Declarative Configuration

{
}

[OnDeserializing]
private void OnDeserializingInitializeAspects()
{

this.InitializeAspects();
}

}

By Invoking AspectUtilities.InitializeCurrentAspects

Instead of providing an empty method InitializeAspects, it is possible to invoke the method
AspectUtilities InitializeCurrentAspects . A call to this method will be translated into a call to
InitializeAspects. It has to be invoked from a non-static method of an enhanced class.

If the class from which InitializeCurrentAspects is invoked has not been enhanced by an aspect
requiring initialization, the call to this method is simply ignored.

Note

Using this approach may be brittle in some situations: calls to InitializeCurrentAspects will have
no effect if aspects are applied to derived classes, but not to the calling class. In this scenario, it
is preferable to define the method InitializeAspects.

5.11.2. Configuring Aspects
Configuration settings of aspects determine how they should be processed by their weaver. Config-
uration settings are always evaluated at build time. Most aspects have one or many of them. For
instance, the aspect type OnExceptionAspect has a configuration setting determining the type of
exceptions handled with this aspect.

There are two ways to configure an aspect: declarative and imperative.

You can configure an aspect declaratively by applying the appropriate custom attribute on the aspect
class. Aspect configuration attributes are in the namespace PostSharp.Aspects.Configuration. Every
aspect type has its corresponding type of configuration attribute. The name of the custom attribute
starts with the name of the aspect and has the suffix ConfigurationAttribute. For instance, the
configuration attribute of the aspect class OnExceptionAspect is OnExceptionAspectConfiguration-
Attribute.

Declarative configuration has always precedence over imperative configuration: if some property of
the configuration custom attribute is set on the aspect class, or on any parent, the corresponding
imperative semantic will not be evaluated.

Once a configuration property has been set in a parent class, it cannot be overwritten in a child class.

PostSharp 3.0 Documentation

234

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_AspectUtilities_InitializeCurrentAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_AspectUtilities_InitializeCurrentAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_AspectUtilities_InitializeCurrentAspects.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/N_PostSharp_Aspects_Configuration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Configuration_OnExceptionAspectConfigurationAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Configuration_OnExceptionAspectConfigurationAttribute.htm

Imperative Configuration

Note that these restrictions are enforced at the level of properties. If a property of a configuration
custom attribute is not set in a parent class, it can still be overwritten in a child class or by an
imperative semantic.

A second way to configure an aspect class is to override its configuration methods or set its configu-
ration property.

Note

Imperative configuration is only available when you target the full .NET Framework. It is not
available for Silverlight or the Compact Framework.

Benefits of Imperative Configuration

The advantage of imperative configuration is that it can be arbitrarily complex (since the code of the
configuration method is executed inside the weaver). Specifically, it allows the configuration to be
dependent on how the aspect is actually used, for instance the configuration can depend on the value
of a property of the aspect custom attribute.

Implementation Note

Under the hood, aspects implement the method IAspectBuildSemantics GetAspect-
Configuration(Object). This method should return a configuration object, derived from the class
AspectConfiguration. Every aspect class has its own aspect configuration class. For instance, the
configuration attribute of the aspect class OnExceptionAspect is OnExceptionAspectConfiguration.
The aspect type OnExceptionAspect implements IAspectBuildSemantics GetAspect-
Configuration(Object) by creating an instance of OnExceptionAspectConfiguration, then it invokes
the method OnExceptionAspect GetExceptionType(MethodBase) and copies the return value of this
method to the property OnExceptionAspectConfiguration ExceptionType. Therefore, there are two
ways to configure an aspect: either by overriding configuration methods and setting configuration
properties (these methods and properties are provided by the framework for convenience only), or
by implementing the method IAspectBuildSemantics GetAspectConfiguration(Object). If your aspect
does not derive from the aspect class OnExceptionAspect, but directly implements the aspect interface
IOnExceptionAspect, you can use only the later method.

5.12. Examples

5.12.1. Tracing Method Execution
This code implements an aspect that writes a trace message before and after the execution of the
methods to which the aspect is applied.

PostSharp 3.0 Documentation

235

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectBuildSemantics_GetAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectBuildSemantics_GetAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Configuration_AspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Configuration_OnExceptionAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectBuildSemantics_GetAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectBuildSemantics_GetAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Configuration_OnExceptionAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_OnExceptionAspect_GetExceptionType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Configuration_OnExceptionAspectConfiguration_ExceptionType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_IAspectBuildSemantics_GetAspectConfiguration.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IOnExceptionAspect.htm

Requirements

Demonstrates

Example

PostSharp 2.0 Community Edition or higher

The example demonstrates the use of OnMethodBoundaryAspect, and shows how to use Runtime-
Initialize(MethodBase) to improve runtime performance.

using System;
using System.Diagnostics;
using System.Reflection;
using PostSharp.Aspects;

namespace Samples
{

[Serializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

// This field is initialized and serialized at build time, then deserialized at runtime.
private readonly string category;

// These fields are initialized at runtime. They do not need to be serialized.
[NonSerialized] private string enteringMessage;
[NonSerialized] private string exitingMessage;

// Default constructor, invoked at build time.
public TraceAttribute()
{
}

// Constructor specifying the tracing category, invoked at build time.
public TraceAttribute(string category)
{

this.category = category;
}

// Invoked only once at runtime from the static constructor of type declaring the target method.
public override void RuntimeInitialize(MethodBase method)
{

string methodName = method.DeclaringType.FullName + method.Name;
this.enteringMessage = "Entering " + methodName;
this.exitingMessage = "Exiting " + methodName;

}

// Invoked at runtime before that target method is invoked.
public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine(this.enteringMessage, this.category);
}

PostSharp 3.0 Documentation

236

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodLevelAspect_RuntimeInitialize.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodLevelAspect_RuntimeInitialize.htm

Remarks

Requirements

Demonstrates

Example

// Invoked at runtime after the target method is invoked (in a finally block).
public override void OnExit(MethodExecutionArgs args)
{

Trace.WriteLine(this.exitingMessage, this.category);
}

}
}

Note that fields enteringMessage and exitingMessage are initialized from method RuntimeInitialize.
This method is invoked only once, before the aspect instance is used for the first time. It may have
been possible to format the trace message from methods OnEntry and OnExit, but doing so would
hurt performance for two reasons:

1. Getting the reflection object (MethodBase) is rather expensive.
2. Concatenating a string creates a new string instance, which causes an overhead to memory

allocation and garbage collection.

The aspect results in instructions that can be inlined by the JIT/NGen compiler, which makes the aspect
almost as fast as hand-written code.

5.12.2. Handling Exceptions
This code is an aspect that handles exceptions by opening a message box. It is useful in WPF
applications to handle specific exceptions, for instance of type IOException

PostSharp 2.0 Community Edition or higher

This example demonstrates the aspect type OnExceptionAspect.

using System;
using System.Reflection;
using System.Windows;
using PostSharp.Aspects;

namespace Samples
{

PostSharp 3.0 Documentation

237

http://msdn2.microsoft.com/en-us/library/29c267yf
http://msdn2.microsoft.com/en-us/library/hccy4eyd
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnExceptionAspect.htm

[Serializable]
public sealed class ExceptionDialogAttribute : OnExceptionAspect
{

// We don't need this field at runtime, so we don't serialize it.
[NonSerialized] private readonly Type exceptionType;

public ExceptionDialogAttribute() : this(null)
{
}

public ExceptionDialogAttribute(Type exceptionType)
{

this.exceptionType = exceptionType;

// Set the default value for the dialog box.
this.Message = "{0}";
this.Caption = "Error";

}

public string Message { get; set; }
public string Caption { get; set; }

// Method invoked at build time. Should return the type of exceptions to be handled.
public override Type GetExceptionType(MethodBase method)
{

return this.exceptionType;
}

// Method invoked at run time.
public override void OnException(MethodExecutionArgs args)
{

// Format the exception message.
string message = string.Format(this.Message, args.Exception.Message);

// Finds the parent window of the dialog box.
DependencyObject dependencyObject = args.Instance as DependencyObject;
Window window = null;
if (dependencyObject != null)
{

window = Window.GetWindow(dependencyObject);
}

if (window != null)
{

// Display the error dialog with a parent window.
MessageBox.Show(window, message, this.Caption, MessageBoxButton.OK, MessageBoxImage.Error);

}
else
{

// Display the error dialog without a parent window.
MessageBox.Show(message, this.Caption, MessageBoxButton.OK, MessageBoxImage.Error);

}

// Do not rethrow the exception.
args.FlowBehavior = FlowBehavior.Return;

}

PostSharp 3.0 Documentation

238

Requirements

Demonstrates

Example

}
}

5.12.3. Caching the Result of a Method
The following class implements an aspect that caches the return value of methods to which it is
applied.

PostSharp 2.0 Community Edition or higher

The example demonstrates the use of OnMethodBoundaryAspect, and shows how to use Flow-
Behavior to skip the execution of a method when its value is found in cache. The property Method-
ExecutionTag is used to store the cache key between the OnEntry and OnSuccess advices.

using System;
using System.Reflection;
using System.Text;
using System.Web;
using PostSharp.Aspects;

namespace Samples
{

[Serializable]
public sealed class CacheAttribute : OnMethodBoundaryAspect
{

// This field will be set by CompileTimeInitialize and serialized at build time,
// then deserialized at runtime.
private string methodName;

// Method executed at build time.
public override void CompileTimeInitialize(MethodBase method, AspectInfo aspectInfo)
{

this.methodName = method.DeclaringType.FullName + "." + method.Name;
}

private string GetCacheKey(object instance, Arguments arguments)
{

// If we have no argument, return just the method name so we don't uselessly allocate memory.
if (instance == null && arguments.Count == 0)

return this.methodName;

// Add all arguments to the cache key. Note that generic arguments are not part of the cache

PostSharp 3.0 Documentation

239

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_MethodExecutionTag.htm

Remarks

// key, so method calls that differ only by generic arguments will have conflicting cache keys.
StringBuilder stringBuilder = new StringBuilder(this.methodName);
stringBuilder.Append('(');
if (instance != null)
{

stringBuilder.Append(instance);
stringBuilder.Append("; ");

}

for (int i = 0; i < arguments.Count; i++)
{

stringBuilder.Append(arguments.GetArgument(i) ?? "null");
stringBuilder.Append(", ");

}

return stringBuilder.ToString();
}

// This method is executed before the execution of target methods of this aspect.
public override void OnEntry(MethodExecutionArgs args)
{

// Compute the cache key.
string cacheKey = GetCacheKey(args.Instance, args.Arguments);

// Fetch the value from the cache.
object value = HttpRuntime.Cache[cacheKey];

if (value != null)
{

// The value was found in cache. Don't execute the method. Return immediately.
args.ReturnValue = value;
args.FlowBehavior = FlowBehavior.Return;

}
else
{

// The value was NOT found in cache. Continue with method execution, but store
// the cache key so that we don't have to compute it in OnSuccess.
args.MethodExecutionTag = cacheKey;

}
}

// This method is executed upon successful completion of target methods of this aspect.
public override void OnSuccess(MethodExecutionArgs args)
{

string cacheKey = (string) args.MethodExecutionTag;
HttpRuntime.Cache[cacheKey] = args.ReturnValue;

}
}

}

Note that the field methodName is initialized from method CompileTimeInitialize(MethodBase, Aspect-
Info). This method is invoked at build time, then the value of the field is serialized into the assembly.
Thanks to this mechanism, no reflection is needed at runtime.

PostSharp 3.0 Documentation

240

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodLevelAspect_CompileTimeInitialize.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodLevelAspect_CompileTimeInitialize.htm

See Also

Requirements

Demonstrates

Example

Reference

OnMethodBoundaryAspect
MethodExecutionArgs FlowBehavior
MethodLevelAspect CompileTimeInitialize(MethodBase, AspectInfo)

5.12.4. Dispatching a Method Execution to the GUI
Thread
This code implements an aspect that causes methods to which it is applied to be invoked on the
GUI thread. Indeed, properties and methods of WPF objects can be accessed only from the thread
from which the object was created. Other threads must use the Dispatcher of this object to dispatch
the invocation of the method to the GUI thread. The Asynchronous property of this aspect allows the
developer to specify that the method should be invoked asynchronously; in this case, the current
thread will not wait until completion of the intercepted method.

PostSharp 2.0 Community Edition or higher

This example demonstrates the use of MethodInterceptionAspect to intercept invocations of method.
Additionally, it shows bow to use CompileTimeValidate(MethodBase) to check that the aspect has
been applied on a valid method.

using System;
using System.Linq;
using System.Reflection;
using System.Windows.Threading;
using PostSharp.Aspects;
using PostSharp.Extensibility;

namespace Samples
{

[Serializable]
[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage(AttributeTargets.Assembly | AttributeTargets.Class | AttributeTargets.Method, AllowMultiple = true)]
public class GuiThreadAttribute : MethodInterceptionAspect
{

public bool Asynchronous { get; set; }

// Method invoked at build time. It validates that the aspect has been applied to an acceptable method.

PostSharp 3.0 Documentation

241

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_OnMethodBoundaryAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_MethodExecutionArgs_FlowBehavior.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Aspects_MethodLevelAspect_CompileTimeInitialize.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm

public override bool CompileTimeValidate(MethodBase method)
{

// The method must be in a type derived from DispatcherObject.
if (!typeof (DispatcherObject).IsAssignableFrom(method.DeclaringType))
{

Message.Write(SeverityType.Error, "CUSTOM02",
"Cannot apply [GuiThread] to method {0} because it is not a member of a type " +
"derived from DispatcherObject.", method);

return false;
}

// If the call is asynchronous, there should not be any return value or ByRef parameter.
if (this.Asynchronous)
{

if (((MethodInfo) method).ReturnType == typeof (void) ||
method.GetParameters().Any(parameter => parameter.ParameterType.IsByRef))

{
Message.Write(SeverityType.Error, "CUSTOM02",

"Cannot apply [GuiThread(Asynchronous=true)] to method {0} because it is not a member " +
"of a type derived from DispatcherObject.", method);

return false;
}

}

return true;
}

// Method invoked at run time _instead_ of the intercepted method.
public override void OnInvoke(MethodInterceptionArgs args)
{

// Get the graphic object.
DispatcherObject dispatcherObject = (DispatcherObject) args.Instance;

// Check whether the current thread has access to this object.
if (dispatcherObject.CheckAccess())
{

// We have access. Proceed with invocation.
args.Proceed();

}
else
{

// We don't have access. Invoke the method synchronously.
if (this.Asynchronous)
{

dispatcherObject.Dispatcher.BeginInvoke(DispatcherPriority.Normal, new Action(args.Proceed));
}
else
{

dispatcherObject.Dispatcher.Invoke(DispatcherPriority.Normal, new Action(args.Proceed));
}

}
}

}
}

PostSharp 3.0 Documentation

242

See Also

Requirements

Demonstrates

Example

Reference

MethodInterceptionAspect
CompileTimeValidate(MethodBase)

5.12.5. Backing a Property with a Registry Value
This code is an aspect that binds a field or a property with a registry value. The first time the field or
property is read, its value is retrieved from registry. Whenever the field or property is written, its value
is written to registry.

PostSharp 2.0 Community Edition or higher

This example illustrates the use of the aspect type LocationInterceptionAspect in a situation where
the location getter invokes the setter. It shows how the aspect can implement IInstanceScopedAspect
to get the same scope (static or instance) than the location to which it is applied; thanks to this, we
can use an aspect field (fetchedFromRegistry) to store the information whether the value has already
been fetched from registry.

using System;
using Microsoft.Win32;
using PostSharp.Aspects;

namespace Samples
{

public sealed class RegistryValueAttribute : LocationInterceptionAspect, IInstanceScopedAspect
{

// True if the the value has already been fetched from registry and stored in the field or property.
// It is not serialize since we don't need it at build time.
[NonSerialized] private bool fetchedFromRegistry;

public RegistryValueAttribute(string keyName, string valueName)
{

this.KeyName = keyName;
this.ValueName = valueName;

}

public string KeyName { get; private set; }
public string ValueName { get; private set; }
public object DefaultValue { get; set; }

PostSharp 3.0 Documentation

243

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_MethodInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm

// Invoked at runtime whenever someone gets the value of the field or property.
public override void OnGetValue(LocationInterceptionArgs args)
{

if (!this.fetchedFromRegistry)
{

// We have not fetched the value from registry. Do it now.
object value = Registry.GetValue(this.KeyName, this.ValueName, this.DefaultValue);

// Store this value in the target field/property.
args.SetNewValue(value);

// Return this value (we don't even need to call the underlying getter).
args.Value = value;

}
else
{

// The value is already stored in the field/property, so just call the
// underlying getter.
args.ProceedGetValue();

}
}

// Invoked at runtime whenever someone gets the value of the field or property.
public override void OnSetValue(LocationInterceptionArgs args)
{

// Store the new value in registry if it has changed.
if (Equals(args.Value, args.GetCurrentValue()))
{

Registry.SetValue(this.KeyName, this.ValueName, args.Value);
}

// Call the underlying setter.
base.OnSetValue(args);

// Sets that the underlying field/property already stores the field.
this.fetchedFromRegistry = true;

}

#region Implementation of IInstanceScopedAspect

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

return this.MemberwiseClone();
}

void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

#endregion
}

}

PostSharp 3.0 Documentation

244

See Also

Requirements

Demonstrates

Example

Reference

LocationInterceptionAspect
IInstanceScopedAspect

5.12.6. Making an Event Asynchronous
This code is an aspect making an event asynchronous. When an event enhanced with this aspect is
fired, subscribed handlers are invoked asynchronously. Whenever a subscribed handler fails with an
exception, it is removed from the list of subscribers of this event.

PostSharp 2.0 Professional Edition or higher

This example illustrates the use of the aspect type EventInterceptionAspect.

using System;
using System.Diagnostics;
using System.Threading.Tasks;
using PostSharp.Aspects;

namespace Samples
{

[Serializable]
public sealed class AsyncEventAttribute : EventInterceptionAspect
{

public override void OnInvokeHandler(EventInterceptionArgs args)
{

// Invoke the event handler asynchronously.
Task.Factory.StartNew(() => Invoke(args)).Start();

}

private static void Invoke(EventInterceptionArgs args)
{

try
{

// Invoke the event handler.
args.ProceedInvokeHandler();

}
catch (Exception e)
{

// Remove the event handler if it failed.

PostSharp 3.0 Documentation

245

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_LocationInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm

See Also

Requirements

Demonstrates

Example

Trace.TraceError(e.ToString());
args.ProceedRemoveHandler();

}
}

}
}

Reference

EventInterceptionAspect

5.12.7. Dynamically Introducing an Interface
This aspect implement a very general way to compose types using a custom attribute. The custom
attribute has two parameters: the type of the interface to be introduced, and the type of the class
implementing the interface. This class should have a default constructor.

PostSharp 2.0 Community Edition or higher

This example demonstrates the use of CompositionAspect.

using System;
using System.Collections;
using PostSharp;
using PostSharp.Aspects;

namespace Samples
{

[Serializable]
public sealed class GeneralComposeAttribute : CompositionAspect
{

// We don't need this field at runtime, so we mark it as non-serialized.
[NonSerialized] private readonly Type interfaceType;

private readonly Type implementationType;

public GeneralComposeAttribute(Type interfaceType, Type implementationType)
{

this.interfaceType = interfaceType;
this.implementationType = implementationType;

PostSharp 3.0 Documentation

246

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_EventInterceptionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm

See Also

Requirements

Demonstrates

}

// Invoked at build time. We return the interface we want to implement.
protected override Type[] GetPublicInterfaces(Type targetType)
{

return new[] {this.interfaceType};
}

// Invoked at run time.
public override object CreateImplementationObject(AdviceArgs args)
{

return Activator.CreateInstance(this.implementationType);
}

}

[GeneralCompose(typeof (IList), typeof (ArrayList))]
internal class TestCompose
{

public TestCompose()
{

// Note the use of the Post.Cast method to get the implemented interface.
IList list = Post.Cast<TestCompose, IList>(this);
list.Add("apple");
list.Add("orange");
list.Add("banana");

}
}

}

Reference

CompositionAspect

5.12.8. Automatically Adding DataContract and
DataMember Attributes
This aspect automatically adds custom attributes DataContract and DataMember to classes so they can
be serialized by the WCF formatter. Properties that must not be serialized must be annotated with the
custom attribute NotDataMemberAttribute.

PostSharp 2.0 Professional Edition or higher

This example demonstrates how CustomAttributeIntroductionAspect can be used together with
IAspectProvider.

PostSharp 3.0 Documentation

247

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CompositionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

Example

See Also

using System;
using System.Collections.Generic;
using System.Reflection;
using System.Runtime.Serialization;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Reflection;

namespace Samples
{

// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[Serializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// This method is called at build time and should just provide other aspects.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(

new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =

new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

// Add the DataContract attribute to the type.
yield return new AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property.
foreach (PropertyInfo property in

targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))
{

if (property.CanWrite && !property.IsDefined(typeof (NotDataMemberAttribute), false))
yield return new AspectInstance(property, introduceDataMemberAspect);

}
}

}

[AttributeUsage(AttributeTargets.Property)]
public sealed class NotDataMemberAttribute : Attribute
{
}

}

Reference

CustomAttributeIntroductionAspect
IAspectProvider

PostSharp 3.0 Documentation

248

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_CustomAttributeIntroductionAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IAspectProvider.htm

Requirements

Demonstrates

Example

5.12.9. Raising an Event When the Object is Finalized
This example shows an aspect that raises an event when instances of the target class is finalized
(during garbage collection).

PostSharp 2.0 Professional Edition or higher

This example demonstrates how a composite aspect can be used to integrate an aspect with another
implementation pattern, here IDisposable. It demonstrates that the lifetime of an instance-scoped
aspect is bound to the lifetime of its target class.

using System;
using PostSharp;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Reflection;

namespace Samples
{

// The aspect will introduce and implement this interface.
public interface IObservableLifetime
{

// Event raised when the object is disposed.
event EventHandler Disposed;

// Event raised when the object is finialized.
event EventHandler Finalized;

}

// The annotation IntroduceInterface specifies that the aspect introduces this interface.
[Serializable]
[IntroduceInterface(typeof (IObservableLifetime), OverrideAction = InterfaceOverrideAction.Fail)]
public class ObservableLifetimeAttribute : InstanceLevelAspect, IObservableLifetime
{

// True if the aspect instance is a 'real' instance, false if it is the prototype instance.
// We do not want to raise the Finalize event on prototype instances.
[NonSerialized] private bool notPrototype;

// True if the aspect has already been invoked.
[NonSerialized] private bool disposed;

// Initializes the aspect instance.
public override void RuntimeInitializeInstance()

PostSharp 3.0 Documentation

249

http://msdn2.microsoft.com/en-us/library/aax125c9

{
this.notPrototype = true;

}

// At runtime, this field is set to a delegate of the method Dispose(bool) before we override it.
[ImportMember("Dispose", IsRequired = true, Order = ImportMemberOrder.BeforeIntroductions)] public Action<bool>

BaseDisposeMethod;

// Overrides the method Dispose(bool) of the target type.
[IntroduceMember(IsVirtual = true, OverrideAction = MemberOverrideAction.OverrideOrFail,

Visibility = Visibility.Family)]
public void Dispose(bool disposing)
{

// Ignore subsequent calls of this method.
if (this.disposed)

return;

this.disposed = true;

// Invoke the Dispose(bool) method of the base type.
this.BaseDisposeMethod(disposing);

// Raise the Disposed event.
if (this.Disposed != null)

this.Disposed(this.Instance, EventArgs.Empty);

// Unlist this object from finalization.
if (disposing)
{

GC.SuppressFinalize(this);
}

}

// Introduces the event Disposed in the target type.
[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
public event EventHandler Disposed;

// Introduces the event Finalized in the target type.
[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
public event EventHandler Finalized;

// Finalizer.
~ObservableLifetimeAttribute()
{

// Ignore the finalizer if we are a prototype instance.
if (!this.notPrototype)

return;

// Call the Dispose method of the target type.
this.BaseDisposeMethod(false);

// Raise the Finalized event.
if (this.Finalized != null)
{

this.Finalized(this.Instance, EventArgs.Empty);
}

PostSharp 3.0 Documentation

250

}
}

// A sample object.
[ObservableLifetime]
internal class DomainObject : IDisposable
{

private readonly string tag;

public DomainObject(string tag)
{

this.tag = tag;
}

protected virtual void Dispose(bool disposing)
{

Console.WriteLine("Dispose({0})", disposing);
}

public void Dispose()
{

this.Dispose(true);
}

public override string ToString()
{

return "{" + tag + "}";
}

}

internal class Program
{

private static void Main(string[] args)
{

DomainObject f1 = new DomainObject("f1");
IObservableLifetime fe1 = Post.Cast<DomainObject, IObservableLifetime>(f1);
fe1.Finalized += OnFinalized;
f1.Dispose();

DomainObject f2 = new DomainObject("f2");
IObservableLifetime fe2 = Post.Cast<DomainObject, IObservableLifetime>(f2);
fe2.Finalized += OnFinalized;
f2 = null;
fe2 = null;
GC.Collect();
GC.WaitForPendingFinalizers();

}

private static void OnFinalized(object sender, EventArgs e)
{

Console.WriteLine("OnFinalized: " + sender);
}

}
}

The output of this program is:

PostSharp 3.0 Documentation

251

Remarks

See Also

Dispose(True)
Dispose(False)
OnFinalized: {f2}

This example is made more complex by the fact that it understands the disposable pattern. The aspect
requires the target class to implement the disposable pattern properly, i.e. to define the method
protected virtual void Dispose(bool). PostSharp will fail if the user tries to apply this aspect to a
class that implements the pattern incorrectly.

The aspect overrides the Dispose(bool) method by defining a method of the same name and
signature, and annotating it with the custom attribute IntroduceMemberAttribute.

In order to be able to invoke the original implementation of Dispose(bool), the aspect defines the
field BaseDisposeMethod, whose type Action<bool> is a delegate compatible with the signature of the
method Dispose(bool). The custom attribute ImportMemberAttribute tells PostSharp to bind this field
to the Dispose method.

Because the aspect class derives from InstanceLevelAspect, which implements IInstanceScopedAspect,
aspect instances have the same lifetime as instances of the target class: both instances are garbage
collected at the same time. Thanks to this, the aspect can reliably raise the Finalized event on the
class instance when the aspect instance itself is collected.

Reference

InstanceLevelAspect
ImportMemberAttribute
IntroduceMemberAttribute
IntroduceInterfaceAttribute
Other Resources

[e4599448-160c-4d56-8a75-f255195fcd17]

5.12.10. More Examples
You can find more examples and tutorials on our web site8.

8. http://www.postsharp.net/support

PostSharp 3.0 Documentation

252

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_IInstanceScopedAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_InstanceLevelAspect.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_ImportMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceMemberAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Advices_IntroduceInterfaceAttribute.htm
http://www.postsharp.net/support
http://www.postsharp.net/support

CHAPTER 6

Enforcing Design Rules

Besides aspect-oriented programming, you can use PostSharp to validate your source code against
architecture and design rules named constraints. Constraints are piece of codes that validate the code
against specific rules at build time.

PostSharp provides ready-made constraints for the following scenarios:

• Restricting Interface Implementation at page 253
• Controlling Component Visibility Beyond Private and Internal at page 258

Additionally, you can develop custom constraints to enforce your own design rules. For details, see
Developing Custom Architectural Constraints at page 270.

6.1. Restricting Interface Implementation
Under some circumstances you may want to restrict users of an API to implement an interface. You
may want to allow them to consume the interface but not to implement it in their own classes, so that,
later, you can add new members to this interface without breaking the user's code. If retaining the
interface as a public artefact is required, the programming language does not give you any option to
enforce the desired restriction. Enter the InternalImplementAttribute from PostSharp.

This topic contains the following sections.

• Adding the constraint to the interface at page 254
• Emitting an error instead of a warning at page 257
• Ignoring warnings at page 257

PostSharp 3.0 Documentation

253

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm

Adding the constraint to the interface

To restrict implemention of publically declared interfaces you simply need to add [InternalImplement-
Attribute] to that interface.

1. Place the caret over the interface that you want to add the attribute select the "Add
architectural constraint..."

2. Select "Prevent interface implementation in a different assembly" and select Next.

PostSharp 3.0 Documentation

254

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm

3. Verify that you will be adding the InternalImplementAttribute attribute to the correct piece of
code.

PostSharp 3.0 Documentation

255

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm

4. Once the download, installation and configuration of PostSharp has finished you can close
the wizard and look at the changes that were made to your codebase.

5. You'll notice that the only thing that has changed in the code is the addition of the [Internal-
ImplementAttribute] attribute.

[InternalImplement]
public interface ICustomerRepository
{

IEnumerable<Customer> FetchAll();
}

Once that is done, implementing the interface that was decorated with the InternalImplementAttribute
from another assembly will create a compile time warning.

Note

To perform this architectural validation the project that is trying to implement the interface will
need to be processed by PostSharp.

PostSharp 3.0 Documentation

256

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm

Emitting an error instead of a warning

Ignoring warnings

If a warning isn't strong enough for your environment you can change the output to a compile time
error by setting the InternalImplementAttribute to have a Severity type of Error.

[InternalImplement(Severity = SeverityType.Error)]
public interface ICustomerRepository
{

IEnumerable<Customer> FetchAll();
}

Now any reference to the decorated interface from another assembly will generate an error and fail
the compilation of your project.

If you are trying to implement a constrained interface in a separate assembly and you want to
override the warning being generated there is a solution available for you. The IgnoreWarning-
Attribute attribute can be applied to stop warnings from being generated.

Note

The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the
warnings to be errors, those errors will still be generated even if the IgnoreWarningAttribute
attribute is present.

To suppress warnings all that you need to do is add the IgnoreWarningAttribute attribute to the
offending piece of code. In this example we would supress the warning being generated by adding
the attribute to the class that is implementing the constrained interface. Once we have done that, the
warning generated for that specific implementation would be suppressed. All other locations that are
implementing this interface will continue to generate their warnings.

Note

You may wonder where the identifier AR0101 comes from. IgnoreWarningAttribute actually works
with any PostSharp warning and not just this one. Any build error, whether from MSBuild, C# or
PostSharp, has an identifier. To see error identifiers in Visual Studio, open the View menu and
click on the Output item, select "Show output from: Build". You will see warnings including their
identifiers.

PostSharp 3.0 Documentation

257

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm

See Also

[IgnoreWarning("AR0101")]
public class PreferredCustomerRepository : ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

return null;
}

}

Reference

InternalImplementAttribute
IgnoreWarningAttribute

6.2. Controlling Component Visibility Beyond
Private and Internal
When you are working on applications it's common to run across situations where you want to restrict
access to a component you have written. Usually you control this access using the private and/or
internal keywords when defining the component. A class marked as internal can be accessed by any
other class in the same assembly, but that may not be the level of restriction needed within the
codebase. Access to a private class is restricted to those components that are inside the same class
or struct that contains the private class, which prevents any other classes from accessing it. In one
situation we are restricting access to the component to only the class or struct that contains it. In the
other situation we are allowing access to the component from any other component that is in the
same assembly. What if needed something in between?

PostSharp offers the ability to define component access rules that exist between the scope of the
internal and private keywords. This gives us the opportunity to restrict access to a component only
from other components in the same namespace. We can also restrict access to a select few other
components.

As an example let's look at a data access related class. As a precaution against developer's circum-
venting our data access structure we want to limit access to this repository class.

This topic contains the following sections.

• Restricting access to specific namespaces at page 259
• Restricting access to specific types at page 263
• Controlling component visibility outside of the containing assembly at page 263
• Emitting errors instead of warnings at page 268
• Ignoring warnings at page 269

PostSharp 3.0 Documentation

258

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalImplementAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm

Restricting access to specific namespaces

Our first step is to limit access to this class only to other classes within the validation namespace.

1. Put the caret on the internal class that should have restricted access. Select "Add
architectural constraint..." from the smart tag options.

2. Select "Prohibit use outside of given types" from the list of options.

PostSharp 3.0 Documentation

259

3. Verify that you will be adding the ComponentInternalAttribute attribute to the correct piece
of code.

PostSharp 3.0 Documentation

260

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm

4. Once the download, installation and configuration of PostSharp has finished you can close
the wizard and look at the changes that were made to your codebase.

5. You'll notice that the only thing that has changed in the code is the addition of the
[ComponentInternalAttribute] attribute.

namespace Sharpcrafters.Crm.Console.Repositories
{

public class InvoiceRepository
{

[ComponentInternal]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}
}

}

6. The [ComponentInternalAttribute] attribute is templated to accept a string for the namespace
that should be able to access this method. There are two options that you could use. The
first is to pass the attribute an array of typeof(...) values that represents the types that
can access this method. The second option is to pass in an array of strings that contain the
namespaces of the code that should be able to access this method. For our example, replace
the typeof(TODO) with a string for the validation namespace.

PostSharp 3.0 Documentation

261

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm

7. If you try to access this component from a namespace that hasn't been granted access you
will see a compile time warning in the Output window.

namespace Sharpcrafters.Crm.Console.Services
{

public class InvoiceServices
{

public IEnumerable<InvoiceForList> FetchAllInvoicesForCustomer(Guid id)
{

var invoiceRepository = new InvoiceRepository();

var allInvoices = invoiceRepository.FetchAllForCustomer(id);
return

allInvoices.Where(x => !x.PaidInFull).Select(
x => new InvoiceForList

{
PurchaseDate = x.PurchaseDate,
ShipDate = x.ShipDate,
TotalAmount = x.Total

});
}

}
}

Note

If you are trying to access the component from a namespace that is in a different project
you will need PostSharp to process that project for the validation to occur.

PostSharp 3.0 Documentation

262

Restricting access to specific types

Controlling component visibility outside of the containing assembly

Under some circumstances namespace level restrictions may not be tight enough for your needs. In
that situation you have the ability to apply this constraint at a type level.

1. To restrict access at a component type level you need to explicitly define which component
types will have access. This is done by passing types into the constructor of the Component-
InternalAttribute attribute's constructor. The construct accepts an array of Type which allows
you to define many different component types that should be granted access.

public class InvoiceRepository
{

[ComponentInternal(typeof(Sharpcrafters.Crm.Console.Services.InvoiceServices))]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}
}

2. Now if you try to access this component from a type that hasn't been granted access you will
see a compile time warning in the Output window.

public class CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

Because of framework limitations or automated testing requirements you sometimes need to declare
components as public so that you can perform the desired tasks or testing. For some of those
components you probably don't want external applications accessing them. For instance, WPF controls
need a default constructor for use in the designer, but sometimes you want another constructor to be
used at runtime, so you want to prevent the default constructor to be used from code.

PostSharp 3.0 Documentation

263

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm

PostSharp offers you the ability to decorate a publically declared component in such a way that it is
not accessible by applications that reference its assembly. All you need to do is apply the Internal-
Attribute attribute.

1. Let's mark the Customer class so that it can only be accessed from the assembly it resides in.

namespace Sharpcrafters.Crm.Core
{

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }

}
}

2. Place the caret on the publically declared component that you want to restrict external access
to and expand the smart tag. Select "Add architectural constraint".

PostSharp 3.0 Documentation

264

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm

3. When prompted to select a constraint, choose to "Prohibit use outside of the project".

PostSharp 3.0 Documentation

265

4. The summary page gives you the opportunity to review the selections that you have made. If
you notice that the configuration is not what you wanted you can click the Previous button
and adjust your selections. If the configuration meets your needs click Next. In this demo you
will see that the [InternalAttribute] attribute is being added to the Customer class.

PostSharp 3.0 Documentation

266

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm

5. Once the download, installation and configuration of PostSharp has finished you can close
the wizard and look at the changes that were made to your codebase.

6. You'll notice that the only thing that has changed in the code is the addition of the [Internal-
Attribute] attribute.

namespace Sharpcrafters.Crm.Core
{

[Internal]
public class Customer
{

public int Id { get; set; }
public string Name { get; set; }

}
}

PostSharp 3.0 Documentation

267

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm

Emitting errors instead of warnings

7. When you attempt to make use of that public component in a different assembly a compile
time warning will appear in the Output window.

namespace Sharpcrafters.Crm.Console.Repositories
{

public class CustomerRepository:ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

return new List<Customer>{new Customer{Id=1,Name="Joe Johnson"}};
}

}
}

Note

The assembly that is attempting to use the public component will need to reference
PostSharp for this validation to occur.

By default any situation that breaks the access rules defined by the application of the Component-
InternalAttribute or InternalAttribute attribute will generate a compile time warning. It's possible to
escalate this warning to the error level.

1. Changing the output warning to an error requires you to set the Severity level.

[ComponentInternal(typeof (InvoiceServices), Severity = SeverityType.Error)]
public IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}

2. Now when you try to access the component when access hasn't been granted the Output
window will display an error message.

PostSharp 3.0 Documentation

268

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Constraints_ComponentInternalAttribute_Severity.htm

Ignoring warnings

There may be specific situations where you want to supress the warning message that is being
generated at compile time. In those cases you can apply the IgnoreWarningAttribute attribute to the
locations where you want to allow access to the component.

Note

The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the
warnings to be errors, those errors will still be generated even if the IgnoreWarningAttribute
attribute is present.

If you wanted to allow access to the constrained component in a specific method you could add the
IgnoreWarningAttribute attribute to that method.

public class CustomerServices
{

[IgnoreWarning("AR0102")]
public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

Note

AR0102 is the identifier of the warning emitted by ComponentInternalAttribute. To ignore
warnings emitted by Internal, use the identifier AR0104.

You may wonder where these identifiers come from. IgnoreWarningAttribute actually works with
any PostSharp warning and not just this one. Any build error, whether from MSBuild, C# or
PostSharp, has an identifier. To see error identifiers in Visual Studio, open the View menu and
click on the Output item, select "Show output from: Build". You will see warnings including their
identifiers.

If you wanted to allow access in an entire class you could add the IgnoreWarningAttribute attribute
at the class level. Any access to the constrained component within the class would have its warning
suppressed.

[IgnoreWarning("AR0102")]
public class CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

PostSharp 3.0 Documentation

269

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm

See Also

Creating a scalar constraint

}
}

Reference

IgnoreWarningAttribute
ComponentInternalAttribute
InternalAttribute

6.3. Developing Custom Architectural
Constraints
When you are creating your applications it is common to adopt custom design patterns that must be
respected accross all modules. Custom design patterns have the same benefits as standard ones, but
they are specific to your application. For instance, the team could decide that every class derived from
BusinessRule must have a nested class named Factory, derived from BusinessRulesFactory, with a
public default constructor.

Even performing line-by-line code reviews can miss violations of the pattern. Is there a better way to
ensure that this doesn't happen? PostSharp offers the ability create custom architectural constraints.
The constraints that you write are able to verify anything that you can query using reflection.

There are two kinds of constraints: scalar constraints and referential constraints.

This topic contains the following sections.

• Creating a scalar constraint at page 270
• Creating a referential constraint at page 275
• Validating the constraint itself at page 278
• Ignoring warnings at page 279

Scalar constraints typically validate an element of code, while referential constraints validate how an
element of code is being used.

PostSharp 3.0 Documentation

270

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ComponentInternalAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_InternalAttribute.htm

Let's start with a scalar constraint and create a constraint that verifies the first condition our
BusinessRule design pattern: that any class derived from BusinessRule must have a nested class
named Factory. We can model this condition as a scalar constraint that applies to any class derived
from BusinessRule. Therefore, we will create a type-level scalar constraint, apply it to the BusinessRule
class, and use attribute inheritance to have the constraint automatically applied to all derived classes.

1. Create a class that inherits from the ScalarConstraint class in PostSharp.

using System;
public class BusinessRulePatternValidation : ScalarConstraint
{
}

2. Designate what code construct type this validation aspect should work for by adding the
MulticastAttributeUsageAttribute attribute. In this case we want the validation to occur on
types only, and we want to enable inheritance.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{
}

3. Override the ValidateCode(Object) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{
}

}

PostSharp 3.0 Documentation

271

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ScalarConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_ScalarConstraint_ValidateCode.htm

4. Create a rule that checks that there's a nested type called Factory. You'll note that the target

parameter for the ValidateCode(Object) method is an object type. Depending on which
target type you declare in the MulticastAttributeUsageAttribute attribute, the value passed
through this parameter will change. For MulticastTargets.Type the type passed is Type. To
make use of the target for validation you must cast to that type first.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type) target;

if (targetType.GetNestedType("Factory") == null)
{

// Error
}

}
}

Note

Valid types for the target parameter of the ValidateCode(Object) method include
Assembly, Type, MethodInfo, ConstructorInfo, PropertyInfo, EventInfo, FieldInfo, and
ParameterInfo.

5. Write a warning that the rule being broken to the Output window in Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Warning,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

PostSharp 3.0 Documentation

272

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_ScalarConstraint_ValidateCode.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_ScalarConstraint_ValidateCode.htm

6. Attach the rule to the code that needs to be protected. For this example we want to add this
rule to the BusinessRule class.

[BusinessRulePatternValidation]
public class BusinessRule
{

// No Factory class here.
}

Note

This example shows applying the constraint to only one class. If you want to apply a
constraint to large portions of your codebase, read the section on Adding Aspects to
Multiple Declarations at page 116

7. Now if you compile the project you will see an error in the Output window of Visual Studio
when you run a build.

PostSharp 3.0 Documentation

273

8. In some circumstances you may determine that a warning isn't aggressive enough. We can
alter the rule that you have created so that it outputs a compile time error instead. All that
you need to do is change the SeverityType in the Message.Write to Error.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Error,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

Using this technique it is possible to create rules or restrictions based on a number of different criteria
and implement validation for several design patterns.

When you are working on projects you need to ensure that they adhere to the ideals and principles
that our project teams hold dear. As with any process in software development, manual verification is
guaranteed to fail at some point in time. As you do in other areas of the development process, you
should look to automate the verification and enforcement of our ideals. The ability to create custom
architectural constraints provides both the flexibility and verification that you need to achieve this
goal.

PostSharp 3.0 Documentation

274

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_SeverityType.htm

Creating a referential constraint

Now let's create a referential constraint that verifies the second condition our BusinessRule design
pattern: that the BusinessRule class can only be used in the Controllers namespace. You can model
this condition as a referential constraint and apply the constraint to any class in your codebase. If you
apply this constraint to the entirety of your codebase you will ensure that the BusinessRule design
pattern is only referenced in the Controllers namespace.

1. Create a class that inherits from the ReferentialConstraint class in PostSharp.

public class BusinessRuleUseValidation : ReferentialConstraint
{
}

2. Declare that this aspect should work only on types by adding the MulticastAttributeUsage-
Attribute attribute to the class.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRuleUseValidation : ReferentialConstraint
{
}

3. Override the ValidateCode(Object, Assembly) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
BusinessRuleUseValidation : ReferentialConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{
}

}

PostSharp 3.0 Documentation

275

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ReferentialConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_ReferentialConstraint_ValidateCode.htm

4. Create the rule that checks for the use of the BusinessRule type in the target code.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch

.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

// Warning
}

}
}

Note

The rule here makes use of the ReflectionSearch helper class that is provided by the
PostSharp framework. This class, along with others, is an extension to the built in
reflection functionality of .NET and can be used outside of aspects as well.

5. Write a warning message to be included in the Output window of Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch
.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

Message.Write(
targetType, SeverityType.Warning,
"2002",
"The {0} type contains a reference to 'BusinessRule'" +
"which should only be referenced from Controllers.",
targetType.Name);

}
}

}

PostSharp 3.0 Documentation

276

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Reflection_ReflectionSearch.htm

6. Attach the referential constraint that you created to any code that needs to be checked. In
this example, add an attribute to the AccountRepository class.

namespace PostSharp.Architecture.Repositories
{

[BusinessRuleUseValidation]
public class AccountRepository
{

public void AddAccount(string name)
{

var businessRule = new BusinessRule();
businessRule.DoStuff();

}
}

}

Note

This example shows applying the constraint to only one class. If you want to apply this
constraint to a larger portion of your codebase, read the section on Adding Aspects to
Multiple Declarations at page 116.

7. Now when you compile the project you will see a warning in the Output window in Visual
Studio.

Note

If using a warning isn't aggressive enough you can change the SeverityType to Error.
Now when the rule is broken an error will appear in the Output window of Visual Studio
and the build will not be successful.

PostSharp 3.0 Documentation

277

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_SeverityType.htm

Validating the constraint itself

Caution

PostSharp constraints operate at the lowest level. For instance, checking relationships of a type
with the rest of the code does not implicitly check the relationships of the methods of this type.
Also, checking relationships of namespaces is not possible.

Custom attribute multicasting can be used to apply a constraint to a large number of types, for
instance all types of a namespace. But this would result in one constraint instance for every type,
method and field on this namespace. Altough this has no impact on run time, it could severely
affect build time. For this reason, the current version of PostSharp Constraints is not suitable to
check isolation (layering) of namespaces at large scale.

Referential constraints provide you with the ability to declare architectural design patterns right in
your code. By documenting these patterns right in the codebase you are able to provide easy access
for the development team as well as continual verification that your desired design patterns are being
adhered to.

Now that you have created scalar and referential constraints you can be assured that certain
architectural rules are being consistently implemented in your codebase. There is one thing that is
missing though.

With what you have done thus far, it is possible to attach your architectural constraints to any code
element in your projects. This may not be appropriate. For example, the scalar constraint that you
created to perform the BusinessRulePatternValidation may be a valid constraint only on classes that
exist in the Models namespace.

Let's look at how we can ensure that this constraint is only enforced on classes that exist in the Models
namespace.

1. Open the BusinessRulePatternValidation class that you created earlier.

2. Override the ValidateConstraint(Object) method.

3. Write the validation logic to ensure that this constraint is only applied to classes in the Models

namespace.

Note

When the ValidateConstraint(Object) method returns true, it tells PostSharp that the
constraint should be applied to that target code element. When the Validate-
Constraint(Object) method returns false PostSharp will not apply the constraint to the
target code element.

PostSharp 3.0 Documentation

278

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_Constraint_ValidateConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_Constraint_ValidateConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_Constraint_ValidateConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/M_PostSharp_Constraints_Constraint_ValidateConstraint.htm

Ignoring warnings

See Also

Now, when the BusinessRulePatternValidation attribute is applied to a class that is not in the Models
namespace of your project, there will be no warning or error added to the Visual Studio Output
window.

When the attribute is applied to a class in the Models namespace and that class doesn't pass the
constraint's rules you will continue to see the warning or error indicating this architectural failure.

There will be situations where a constraint is generating a warning that is of no concern. In these
exceptional circumstances it is best if you remove the warning from the Visual Studio Output window.

To ignore these unnecessary warnings, find the target code that is responsible for generating the
warning. Add the IgnoreWarningAttribute attribute to the target code entering the MessageId of the
warning that you want to suppress.

The MessageId can be found in your constraint where you issue the Message.Write command. The
Reason value performs no function during the suppression of the warning. It exists so that you can
provide clear communication as to why the warning is being ignored.

Note

The IgnoreWarningAttribute attribute will only suppress the issuance of Message.Write
statements that are assigned a SeverityType of Warning. If the SeverityType is set to Error the
IgnoreWarningAttribute attribute will have no suppression effect on that statement.

Reference

MulticastAttributeUsageAttribute
ScalarConstraint
IgnoreWarningAttribute
MessageId
Reason
MulticastAttributeUsageAttribute

PostSharp 3.0 Documentation

279

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_IgnoreWarningAttribute_MessageId.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_IgnoreWarningAttribute_MessageId.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_IgnoreWarningAttribute_Reason.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_SeverityType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_SeverityType.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Constraints_ScalarConstraint.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_IgnoreWarningAttribute_MessageId.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_IgnoreWarningAttribute_Reason.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MulticastAttributeUsageAttribute.htm

PostSharp 3.0 Documentation

280

Ignoring or escalating warnings globally

CHAPTER 7

Working with Errors, Warnings, and
Messages

As any compiler, PostSharp can emit messages, warnings, and errors, commonly referred to
asmessage. Custom code running at build time (typically the implementation of CompileTimeValidate
or of a custom constraint) can use PostSharp messaging facility to emit their own messages.

In this section:

• Ignoring and Escalating Warnings at page 281
• Emitting Errors, Warnings, and Messages at page 282.

Tip

PostSharp 2.1 contains an experimental feature that adds file and line information to errors and
warnings. The feature requires Visual Studio. In must be enabled manually in the PostSharp tab
of Visual Studio options.

7.1. Ignoring and Escalating Warnings
As with conventional compilers, warnings emitted by PostSharp, as well as those emitted by custom
code running at build time in PostSharp, can be ignored (in that case they will not be displayed) or
escalated into errors.

Warnings can be ignored either globally, using a project-wide setting, or locally for a given element
of code. Warnings can be escalated only globally.

There are several ways to ignore or escalate a warning for a complete project:

• In Visual Studio, in the PostSharp tab of the project properties dialog. See Configuring Post-
Sharp at page 25 for details.

PostSharp 3.0 Documentation

281

Ignoring warnings locally

Emitting messages

• By defining the PostSharpDisabledMessages or PostSharpEscalatedMessages MSBuild
properties. See Configuring PostSharp at page 25 and Configurable MSBuild Properties at
page 28 for details.

• By using the DisablePostSharpMessageAttribute or EscalatePostSharpMessageAttribute
custom attribute at assembly level. This approach is considered obsolete.

Note

The value * can be used to escalate all warnings into errors.

Most warnings are related to a specific element of code. To disable a specific warning for a specific
element of code, add the IgnoreWarningAttribute custom attribute to that element of code, or to any
enclosing element of code (for instance, adding the attribute to a type will make it effective for all
members of this type).

To ignore warnings emitted by constraints, it is preferable to use the IgnoreConstraintWarning-
Attribute custom attribute. Indeed, this attribute is conditional to the compilation symbol
POSTSHARP_CONSTRAINTS, so it will be ignored by the compiler unless constraint verification is
enabled for the current project and build configuration.

You can create your own custom attribute derived from IgnoreWarningAttribute and make it
conditional to a compilation symbol by using the ConditionalAttribute custom attribute.

7.2. Emitting Errors, Warnings, and Messages
Custom code running in PostSharp at build time can use the messaging facility to emit its own
messages, warnings, and errors. These messages will appear in the MSBuild output and/or in Visual
Studio. User-emitted warnings can be ignored or escalated using the same mechanism as for system
messages.

If you just have a few messages to emit, you may simply use one of the overloads of the Write method
of the Message class.

All messages must have a severity SeverityType, a message number (used as a reference when
ignoring or escalating messages), and a message text. Additionally, and preferably, messages may
have a location (MessageLocation).

PostSharp 3.0 Documentation

282

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_EscalatePostSharpMessageAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_IgnoreWarningAttribute.htm
http://msdn2.microsoft.com/en-us/library/y5dw26w3
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_Message.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_SeverityType.htm

Emitting messages using a message source

Note

To benefit from the possibility to ignore messages locally, you should always use provide a
relevant location with your messages. Previous API overloads, which did not require a message
location, are considered obsolete.

Tip

Do not use string.Format to format your messages. Instead, pass message arguments to the
messaging facility, which will format ome argument types, for instance reflection objects, in a
more readable way.

If you want the text of all messages to be stored in a single location, you have to emit messages
through a MessageSource. Typically, you would create a singleton instance of MessageSource for
each component, and associate each instance with a message dispenser. A message dispenser is a
custom-written class implementing the IMessageDispenser interface. The MessageDispenser provides
a convenient abstract implementation.

Note

Although it is tempting to use a ResourceManager as the back-end of a message dispenser,
comes with a non-neglictible performance penalty because of the cost of instantiating the
ResourceManager.

PostSharp 3.0 Documentation

283

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageSource.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_IMessageDispenser.htm
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Extensibility_MessageDispenser.htm

PostSharp 3.0 Documentation

284

See Also

CHAPTER 8

Combining with Other
Technologies

8.1. ASP.NET
There are two ways to develop web applications using Microsoft .NET:

• ASP.NET Application projects are very similar to other projects; they need to be built before
they can be executed. Since they are built using MSBuild, you can use PostSharp as with any
other kind of project.

• ASP.NET Site projects are very specific: there is no project file (a site is actually a directory),
and these projects must not be built. Although they don't use MSBuild, you can theoretically
still use PostSharp with ASP.NET site projects thanks to the project PostSharp4AspNet9. As
explained on the home page of this project, using PostSharp with ASP.NET Site projects is not
recommended and not officially supported.

Other Resources

PostSharp4AspNet10

8.2. ILMerge
Caution

The current version of ILMerge has bugs that prevent it from being used with assemblies
processed by PostSharp.

9. http://postsharp4aspnet.codeplex.com/
10. http://postsharp4aspnet.codeplex.com/

PostSharp 3.0 Documentation

285

http://postsharp4aspnet.codeplex.com/
http://postsharp4aspnet.codeplex.com/
http://postsharp4aspnet.codeplex.com/
http://postsharp4aspnet.codeplex.com/

You can use ILMerge to combine PostSharp.dll, or assemblies processed by PostSharp, into a large
assembly. However, all assemblies enhanced by aspects must be made aware of this.

As explained in Understanding Aspect Lifetime and Scope at page 178, aspects are serialized at build
time and deserialized at run time. Serialization data include the type name of aspects. If aspect classes
are moved to a different assembly, the deserializer will complain that the aspect type does not exist
any more.

Therefore, you have to make the serializer aware of the new name of assemblies. This can be achieved
by tweaking the BinaryAspectSerializationBinder object.

((BinaryAspectSerializationBinder) BinaryAspectSerializer.Binder).Retarget("OldAssemblyName", "MergedAssemblyName");

The aspect serializer must be configured before aspects are deserialized, i.e. before the first class
affected by an aspect is accessed by the program.

Note

You can also provide your own implementation of SerializationBinder by setting the property
BinaryAspectSerializer Binder.

8.3. Obfuscation Tools
Starting from version 3, PostSharp generates assemblies that are theoretically compatible with all
obfuscators.

Caution

PostSharp 3 generates constructs that are not emitted by Microsoft compilers (for instance
methodof). These unusual constructs may reveal bugs in third-party tools, because they are
generally tested against the output of Microsoft compilers.

8.4. Microsoft Code Analysis (FxCop)
Code Analysis for managed code analyzes managed assemblies and reports information about the
assemblies, such as violations of the programming and design rules set forth in the Microsoft .NET
Framework Design Guidelines.

The analysis tool represents the checks it performs during an analysis as warning messages. Warning
messages identify any relevant programming and design issues and, when it is possible, supply
information about how to fix the problem.

Code Analysis in integrated into Visual Studio Premium or Visual Studio Ultimate. The same product
is available for free and is known as FxCop; FxCop requires manual integration with your build scripts.

PostSharp 3.0 Documentation

286

http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/T_PostSharp_Aspects_Serialization_BinaryAspectSerializationBinder.htm
http://msdn2.microsoft.com/en-us/library/ffas09b2
http://doc.postsharp.net/postsharp-3.0/Content.aspx/PostSharp-3.0.chm/html/P_PostSharp_Aspects_Serialization_BinaryAspectSerializer_Binder.htm

Code Analysis must process assemblies before they have been processed by PostSharp. Indeed, Post-
Sharp may add internal and private members, or generate instructions, that do not comply to Code
Analysis rules. However, the warnings you would get from analyzing post-processed assemblies are
not likely to be relevant.

PostSharp reconfigures the build process so that Code Analysis is executed on the assemblies as they
were before being enhanced by PostSharp. If you are using Code Analysis as an integrated part of
Visual, no change of configuration is required.

If you are executing FxCop manually or by using custom MSBuild integration, you should process
assemblies from directories obj\CodeAnalysis\Before-PostSharp instead of bin\CodeAnalysis.

PostSharp 3.0 Documentation

287

	Table of Contents
	What's New in PostSharp?
	Deploying and Configuring PostSharp
	Requirements
	Installing PostSharp
	Deploying License Keys
	Configuring PostSharp
	Configurable MSBuild Properties
	Configurable PostSharp Properties

	Using PostSharp on a Build Server
	Restoring packages at build time
	Upgrading from PostSharp 2
	Installing PostSharp Unattended
	Incompatibilities with Other Products

	Working with Ready-Made Aspects
	Working with the Diagnostics Pattern Library
	Adding Detailed Tracing to a Code Base
	Tracing Parameter Values Upon Exception

	Working with the Threading Pattern Library
	Working with Threading Models
	Ensuring Thread-Unsafe Objects are Not Shared
	Using the Reader/Writer Synchronized Object Model
	Using the Actor Threading Model

	Dispatching a Method to the UI Thread
	Dispatching a Method to Background
	Detecting Deadlocks at Runtime

	Working with the Model Pattern Library
	Automatically implementing INotifyPropertyChanged
	Customizing the NotifyPropertyChanged Aspect
	Working with Properties that Depend on Other Objects

	Validating Parameters, Fields and Properties

	Adding Aspects to Code
	Adding Aspects Declaratively Using Attributes
	Adding Aspects to a Single Declaration
	Adding Aspects to Multiple Declarations
	Adding Aspects to Derived Classes and Methods
	Overriding and Removing Aspect Instances
	Reflecting Aspect Instances at Runtime
	Understanding Attribute Multicasting
	Understanding Aspect Inheritance

	Adding Aspects Using XML
	Adding Aspects Programmatically using IAspectProvider

	Developing Custom Aspects
	Developing Simple Aspects
	Injecting Behaviors Before and After Method Execution
	Handling Exceptions
	Intercepting Methods
	Intercepting Properties and Fields
	Intercepting Events
	Introducing Interfaces
	Introducing Custom Attributes
	Introducing Managed Resources

	Understanding Aspect Lifetime and Scope
	Validating Aspect Usage
	Initializing Aspects
	Developing Composite Aspects
	Adding Behaviors to Existing Members
	Introducing Interfaces, Methods, Properties and Events
	Accessing Members of the Target Class
	Adding Aspects Dynamically

	Coping with Several Aspects on the Same Target
	Ordering Advices

	Targeting Windows Phone, Windows Store or Silverlight
	Understanding Interception Aspects
	Understanding Aspect Serialization
	Testing and Debugging Aspects
	Writing Simple Tests
	Testing that an Aspect has been Applied
	Consuming Dependencies from the Aspect
	Using a Global Composition Container
	Using a Global Service Locator
	Using Dynamic Dependency Resolution
	Using Contextual Dependency Resolution
	Importing Dependencies from the Target Object

	Testing Build-Time Logic
	Attaching a Debugger at Build Time

	Advanced
	Coping with Custom Object Serializers
	Configuring Aspects

	Examples
	Tracing Method Execution
	Handling Exceptions
	Caching the Result of a Method
	Dispatching a Method Execution to the GUI Thread
	Backing a Property with a Registry Value
	Making an Event Asynchronous
	Dynamically Introducing an Interface
	Automatically Adding DataContract and DataMember Attributes
	Raising an Event When the Object is Finalized
	More Examples

	Enforcing Design Rules
	Restricting Interface Implementation
	Controlling Component Visibility Beyond Private and Internal
	Developing Custom Architectural Constraints

	Working with Errors, Warnings, and Messages
	Ignoring and Escalating Warnings
	Emitting Errors, Warnings, and Messages

	Combining with Other Technologies
	ASP.NET
	ILMerge
	Obfuscation Tools
	Microsoft Code Analysis (FxCop)

