
PostSharp 4.3
User Manual

Copyright SharpCrafters s.r.o. 2019. All rights reserved.

2

Table of Contents

7Introduction
9Quick Examples

13Why to Use PostSharp
13Which Problems Does PostSharp Solves
14Benefits of Pattern-Aware Compiler Extensions
15Benefits of PostSharp vs Alternatives
19How Does PostSharp Work
19Key Technologies
23How to Learn PostSharp
23Architecture Role: Selecting and Creating Aspects
25Deployment Role: Installing and Deploying PostSharp
25Developer Role: Using Aspects
29What's New in PostSharp
29What's New in PostSharp 4.3
31What's New in PostSharp 4.2
33What's New in PostSharp 4.1
33What's New in PostSharp 4.0
35What's New in PostSharp 3.1
36What's New in PostSharp 3.0
37What's New in PostSharp 2.1
38What's New in PostSharp 2.0
40What's New in PostSharp 1.5

41Deployment and Configuration
43Deployment
43Requirements and Compatibility
46PostSharp Components
47Installing PostSharp Tools for Visual Studio
47Installing PostSharp Into a Project
48Installing PostSharp without NuGet
54Using PostSharp on a Build Server
56Upgrading from a Previous Version of PostSharp
58Uninstalling PostSharp
64Deploying PostSharp to End-User Devices
65Executing PostSharp from the Command Line
67Licensing
67Deploying License Keys
71License Audit
71Limitations of PostSharp Express
72Sharing Source Code With Unlicensed Teams
73Installing and Servicing PostSharp License Server
77Using PostSharp License Server
83Configuration
83Configuring Projects in Visual Studio
85Configuring Projects Using MSBuild
89Working with PostSharp Configuration Files
96Accessing Configuration from Source Code
97Working with Errors, Warnings, and Messages
99Resolution of assembly binding redirections

100Reducing Build Time

105Standard Patterns
107INotifyPropertyChanged
108Walkthrough: Automatically Implementing INotifyPropertyChanged

3

111Walkthrough: Working with Properties that Depend on Other Objects
113Implementing INotifyPropertyChanging
114Handling Corner Cases
117Integrating with UI Frameworks
120Understanding the NotifyPropertyChanged Aspect
124Suppressing False Positives
127Parent/Child Relationships
128Walkthrough: Annotating an Object Model for Parent-Child Relationships
131Walkthrough: Enumerating Child Objects
132Walkthrough: Automatically Disposing Children Objects
135Annotating an Object Model programmatically
137Working With Collections
141Using Immutable Collections
143Undo/Redo
143Making Your Model Recordable
145Adding Undo/Redo to the User Interface
147Customizing Undo/Redo Operation Names
151Assigning Recorders Manually
153Adding Callbacks on Undo and Redo
153Understanding the Recordable Aspect
157Contracts
157Walkthrough: Adding Contracts to Code
162Creating Custom Contracts
163Localizing Contract Errors
167Logging
167Walkthrough: Adding Detailed Tracing to a Code Base
171Walkthrough: Customizing Logging
177Walkthrough: Tracing Parameter Values Upon Exception
182Walkthrough: Changing the Logging Back-End
185Adding Aspects to Code
186Adding Aspects Declaratively Using Attributes
202Adding Aspects Using XML
203Adding Aspects Programmatically using IAspectProvider
207Miscellaneous
207Executing Code Just After the Assembly is Loaded

209Threading Patterns
211Writing Thread-Safe Code with Threading Models
212Freezable Threading Model
216Immutable Threading Model
220Actor Threading Model
225Reader/Writer Synchronized Threading Model
229Synchronized Threading Model
233Thread-Unsafe Threading Model
236Thread Affine Threading Model
240Making a Whole Project or Solution Thread Safe
242Opting In and Out From Thread Safety
243Compatibility of Threading Models
244Enabling and Disabling Runtime Verification
247Run-Time Performance of Threading Model
249Dispatching a Method to Background
251Dispatching a Method to the UI Thread
253Detecting Deadlocks at Runtime

261Custom Patterns
263Developing Custom Aspects
263Developing Simple Aspects
304Understanding Aspect Lifetime and Scope
306Initializing Aspects
307Validating Aspect Usage
310Developing Composite Aspects

Table of Contents

4

321Coping with Several Aspects on the Same Target
324Understanding Interception Aspects
326Understanding Aspect Serialization
328Customizing Aspect Appearance in Visual Studio
331Advanced
335Testing and Debugging Aspects
335Writing Simple Tests
337Testing that an Aspect has been Applied
338Consuming Dependencies from the Aspect
351Testing Build-Time Logic
352Debugging Run-Time Aspect Logic
355Debugging Build-Time Aspect Logic
357Validating Architecture
357Restricting Interface Implementation
361Controlling Component Visibility Beyond Private and Internal
369Developing Custom Architectural Constraints

5

PART 1

Introduction

CHAPTER 1

Quick Examples

This section shows a few examples to demonstrate what PostSharp is about:
• Standard patterns on page 9
• Thread safety patterns on page 10
• Implementation of custom patterns on page 11
• Validation of custom patterns on page 11

Standard patterns
PostSharp provides implementations of some of the patterns that are the most commonly found in .NET code bases:

• INotifyPropertyChanged: see INotifyPropertyChanged on page 107.
• Parent/child relationships: see Parent/Child Relationships on page 127.
• Undo/redo: see Undo/Redo on page 143.
• Code contracts: see Contracts on page 157.
• Logging: see Walkthrough: Adding Detailed Tracing to a Code Base on page 167.

Example
The following code snippet illustrates an object model where INotifyPropertyChanged, undo/redo, code contracts,
aggregation and code contracts are all implemented using PostSharp ready-made attributes.

[NotifyPropertyChanged]
public class CustomerViewModel
{

[Required]
public Customer Customer { get; set; }

public string FullName { get { return this.Customer.FirstName + " " + this.Customer.LastName; } }
}

[NotifyPropertyChanged]
[Recordable]
public class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[Child]
public AdvisableCollection<Address> Addresses { get; set; }

[Url]
public string HomePage { get; set; }

[Log]
public void Save(DbConnection connection)
{

// ...
}

}

9

[NotifyPropertyChanged]
[Recordable]
public class Address
{

[Parent]
public Customer Parent { get; private set; }

public string Line1 { get; set; }
}

Thread safety patterns
Multi-threading is a great demonstration of the limitations of conventional object-oriented programming. Thread
synchronization is traditionally addressed at an absurdly low level of abstraction, resulting in excessive complexity and
defects.
Yet, several design patterns exist to bring down the complexity of multi-threading. New programming languages have
been designed around these patterns: for instance Erlang over the Actor pattern and functional programming over the
Immutable pattern.
PostSharp gives you the benefits of threading design patterns without leaving C# or VB.
PostSharp supports the following threading models and features:

• Immutable: see Immutable Threading Model on page 216.
• Freezable: see Freezable Threading Model on page 212.
• Actor: see Actor Threading Model on page 220.
• Reader/Writer Synchronized: see Reader/Writer Synchronized Threading Model on page 225.
• Synchronized: see Synchronized Threading Model on page 229.
• Thread Unsafe: see Thread-Unsafe Threading Model on page 233.
• Thread Affine: see Thread Affine Threading Model on page 236.
• Thread Dispatching: see Dispatching a Method to Background on page 249 and Dispatching a Method to the

UI Thread on page 251.
• Deadlock Detection: see Detecting Deadlocks at Runtime on page 253.

Example
The following code snippet shows how a data transfer object can be made freezable, recursively but easily:

[Freezable]
public class Customer
{

public string Name { get; set; }

[Child]
public AdvisableCollection<Address> Addresses { get; set; }

}

[Freezable]
public class Address
{

[Parent]
public Customer Parent { get; private set; }

public string Line1 { get; set; }
}

public class Program
{

public static void Main()

Quick Examples

10

{
Customer customer = ReadCustomer("http://customers.org/11234");

// Prevent changes.
((IFreezable)customer).Freeze();

// The following line will cause an ObjectReadOnlyException.
customer.Addresses[0].Line1 = "Here";

}
}

Implementation of custom patterns
The attributes that implement the standard and thread safety patterns are called aspects. This terms comes from the
paradigm of aspect-oriented programming (AOP). An aspect is a class that encapsulates behaviors that are injected into
another class, method, field, property or event. The process of injecting an aspect into another piece of code is called
weaving. PostSharp weaves aspects at build time; it is also named a build-time aspect weaver.
PostSharp Aspect Framework is a pragmatic implementation of AOP concepts. All ready-made implementations of
patterns are built using PostSharp Aspect Framework. You can use the same technology to automate the implemen-
tation of your own patterns.
To learn more about developing your own aspects, see Developing Custom Aspects on page 263.

Example
The following code snippet shows a simple [PrintException] aspect that writes an exception message to the console
before rethrowing it:

[PSerializable]
class PrintExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

In the next snippet, the [PrintException] aspect is applied to a method:

class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException]
public void Store(string path)
{

File.WriteAllText(path, string.Format("{0} {1}", this.FirstName, this.LastName));
}

}

Validation of custom patterns
Not all patterns can be fully implemented by the compiler. Many patterns involve a lot of hand-written code. However,
they are still patterns because we want to follow the same conventions and approach when solving the same problem.
In this case, we have to validate the code against implementation guidelines of the pattern. This is typically achieved
during code reviews, but as any algorithmic work, it can be partially automated using the right tool. This is the job of the
PostSharp Architecture Framework.
PostSharp Architecture Framework also contains pre-built architectural constraints that help solving common design
problems. For instance, the InternalImplementAttribute constraint prevents an interface to be implemented in an
external assembly.
See Validating Architecture on page 357 for more details about architecture validation.

11

Example
Consider a form-processing application. There may be hundreds of forms, and each form can have dozens of business
rules. In order to reduce complexity, the team decides that all business rules will respect the same pattern. The team
decides that each class representing a business rule must contain a public nested class named Factory, and that this
class must have an [Export(IBusinessRuleFactory)] custom attribute and a default public constructor. The team
wants all developers to follow the convention. Therefore, the team decide to create an architectural constraint that will
validate the code against the project-specific Business Rule Factory pattern.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(targetType, SeverityType.Error, "2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType, targetType.Name);

}

// ...
}

}

[BusinessRulePatternValidation]
public abstract BusinessRule
{

// ...
}

Quick Examples

12

CHAPTER 2

Why to Use PostSharp

How many times did you find yourself:
• copying and pasting blocks of code to implement a functionality (for instance logging)?
• implementing INotifyPropertyChanged manually – and forget a notification?
• trying to understand the business logic behind a cluttered codebase?
• struggling to add or modify functionality in an existing software?
• debugging data races in multithreaded applications?
• wondering why it’s so hard to build enterprise-grade software?

PostSharp started as an open-source project in 2004 and due to its popularity, it soon became a commercial product
trusted by over 50,000 developers worldwide and over 1,000 leading corporations. More than 10% of all Fortune 500
companies including Microsoft, Intel, Bank of America, Phillips, NetApp, BP, Comcast, Volkswagen, Hitachi, Deutsche Bank,
Bosch, Siemens, and Oracle rely on PostSharp to reduce their development and maintenance costs.
With over a decade experience in boilerplate reduction, PostSharp is now the #1 best-selling pattern-aware extension to C#
and VB and the only commercially-supported development tool for .NET.

In this chapter
Topic Description
Which Problems Does PostSharp
Solves on page 13

This topic describes which problems PostSharp attends to address.

Benefits of Pattern-Aware Compiler
Extensions on page 14

This topic defines the concept of Patter-Aware Compiler and explains its
benefits.

Benefits of PostSharp vs
Alternatives on page 15

This topic lists the competitive benefits of using PostSharp over alternatives.

2.1. Which Problems Does PostSharp Solves
Conventional programming languages miss a concept of pattern, therefore patterns are hand-coded and result in
boilerplate code.
Boilerplate code has the following impact:

• High development effort on page 14
• Poor quality software on page 14
• Difficulty to add/modify functionality after release 1.0 on page 14
• Slow ramp-up of new team members on page 14

Which Problems Does PostSharp Solves

13

High development effort
• Large codebases. Some application features require a large amount of repetitive code (boilerplate) when

implemented with existing mainstream compiler technologies.
• Reinventing the wheel. Solutions to problems like INotifyPropertyChanged are always being reinvented

because there is no reusable options within conventional programming languages.

Poor quality software
• High number of defects. Every line of code has a possibility of defect, but code that stems from copy-paste

programming is more likely than other to be buggy because subtle differences are often overlooked.
• Multi-threading issues. Object-oriented programming does not deliver much value when it comes to

developing multi-threaded applications since it addresses issues at a low level of abstraction with locks, events
or interlocked accesses that can easily result in deadlocks or random data races.

• Lack of robustness. Enterprise-grade features such as exception handling or caching are often deliberately
omitted because of the high amount of source code they imply, unintentionally forbidden in some parts of the
applications, simply left untested and unreliable.

Difficulty to add/modify functionality after release 1.0
• Unreadable code that’s difficult to maintain. Business code is often littered with low-level non-functional

requirements and is more difficult to understand and maintain, especially when the initial developer left.
• Strong coupling. Poor problem decomposition results in duplicate code and strong coupling making it very

difficult to change the implementation of features like logging, exception handling or INotifyPropertyChanged
because it is often scattered among thousands of files.

Slow ramp-up of new team members
• Too much knowledge required. When new team members come to work on a specific feature, they often

must first learn about caching, threading and other highly technical issues before being able to contribute to
the business value: an example of bad division of labor.

• Long feedback loops. Even with small development teams, common patterns like diagnostics, logging,
threading, INotifyPropertyChanged and undo/redo can be handled differently by each developer. Architects
need to make sure new team members understand and follow the internal design standards and have to
spend more time on manual code reviews--delaying progress while new team members wait to get feedback
from code review.

2.2. Benefits of Pattern-Aware Compiler Extensions
Pattern-aware programming extends conventional object-oriented programming with a concept of pattern, which becomes
a first-class element of the programming language.
Most mainstream programming languages can be extended with a concept of pattern, avoiding the cost of rewriting
applications in a new language.
Because patterns are supported by the compiler extension (100% compatible with your existing compiler), they do not need
to be manually implemented as boilerplate code. Features such as INotifyPropertyChanged, logging, transactions are
implemented in a cleaner, more concise way, making development and maintenance much easier.
There are 4 reasons to consider using a pattern-aware compiler extension:

• Stop writing boilerplate code and deliver faster on page 15

Why to Use PostSharp

14

• Build more reliable software on page 15
• Add/modify functionality more easily after first release on page 15
• Help new members contribute quicker on page 15

Stop writing boilerplate code and deliver faster
• Fewer lines of code means fewer hours of work. Patterns are repetitive, with little or no decision left to the

developer. However, repetition is exactly what computers are good at. Let the compiler do the repetitive work
and save development time and costs immediately.

Build more reliable software
• Cleaner code means fewer defects. With a pattern-aware compiler eliminating the boilerplate, your code

becomes easier to read, understand and modify, and contains fewer defects.
• Reliability becomes much more affordable. Because they no longer require so much manual coding,

reliability features such as caching or exception handling are much easier and cheaper to implement, so you
can spend your extra time building a more robust app.

Add/modify functionality more easily after first release
• Cleaner and shorter code is easier to understand. After the initial release, too much development time is

spent reading and analyzing source code, especially if the initial developer left. With minimized boilerplate
code, developers can easily focus on business logic and spend much less time trying to understanding the
code.

• Better architecture is future-proof. Using a pattern-aware compiler, features like logging, exception
handling or transactions are no longer scattered among thousands of files but they are defined in one place,
making it much easier and fast to modify when necessary.

Help new members contribute quicker
• Achieve a better division of labor. Using a pattern-aware compiler makes the introduction of new or junior

team members less onerous since they can focus on simpler, more business logic-oriented tasks rather than
having to waste so much time learning complex architectural structures.

• Implement a tighter feedback loop. A pattern-aware compiler can validate that hand-written code respects
a pattern or a model, and it can detect bugs at build time instead of during code reviews, testing, or in
production.

2.3. Benefits of PostSharp vs Alternatives
PostSharp is the #1 pattern-aware extension to C#/VB. It adds a concept of pattern to the languages, resulting in a dramatic
reduction of boilerplate code, lower development and maintenance costs and fewer errors. With PostSharp you can:
Here are the reasons that differentiates PostSharp from alternatives:

• Get more productive in minutes with ready-made pattern implementations on page 16
• Automate more complex patterns and remove more boilerplate on page 16
• Build thread-safe apps--without a PhD on page 17
• Maintain your existing codebase in C# or Visual Basic on page 17
• Benefit from much better run-time performance on page 18

Benefits of PostSharp vs Alternatives

15

Get more productive in minutes with ready-made pattern implementations
• INotifyPropertyChanged Pattern. Automates the implementation of INotifyPropertyChanged and automat-

ically raises notifications for you. It also analyzes chains of dependencies between properties, methods and
fields in your source code, and understands that property getters can access several fields and call different
methods, or even depend on properties of other objects. PostSharp eliminates all the repetition and lets you
go from three lines of code per property to one attribute per base class... so you will never forget to raise a
property change notification again.

• Undo/Redo Pattern. Makes the implementation of the end-users most-wanted features easy and affordable
by recording changes at model level. Provides built-in user controls or allows you to create your own. You can
deliver the familiar Undo/Redo experience to your users without getting stuck writing large amounts of code.

• Code Contracts. Provide validation for valid URLs, email addresses, positive numbers or not-null values and
many more, right out of the box. Allows you to use contract attributes without limitations at any location in
your codebase and validate methods, fields, properties and parameters. This enables you to protect your code
from invalid inputs with custom attributes.

• Logging Pattern. Adds comprehensive logging in a few clicks – without impact on your source code – and lets
you remove it just as quickly. Provides parameter and return values providing added information for
maintenance and support work. Supports most popular back-ends, including log4net, NLog, Enterprise Library,
System Console, System Diagnostics. You can trace everything you need in minutes without cluttering your
code.

Automate more complex patterns and remove more boilerplate
• PostSharp Aspect Framework. PostSharp is hands down the most robust and exhaustive implementation of

aspect-oriented programming for .NET and was evolved into the world's best pattern compiler. It is the most
powerful toolset available to implement automation for your own patterns.

• Largest choice of possible transformations. Includes decoration of methods, iterators and async state
machines, interception of methods, events or properties, introduction of interfaces, methods, events,
properties, custom attributes or resources, and more.

• Composition of several transformations to easily automate complex patterns.
• Dynamic aspect/advice providers. Addresses situations where it is not possible to add aspects declaratively

(using custom attributes) to the source code with dynamic aspect/advice providers.
• Aspect inheritance. Apply an aspect to a base class, specify that you want it to be inherited and all derived

classes will automatically have the aspect applied to them. Relieves you from implementing the aspects
manually and ensures that all derived classes using this aspect's logic is correct.

• Architecture framework. Validates hand-written source code against your own custom pattern guidelines. It
then express the rules in C# using the familiar System.Reflection API, extended with features commonly found
in decompilers, such as “find usage”, and more.

Why to Use PostSharp

16

Build thread-safe apps--without a PhD
Starting new threads and tasks in .NET languages is simple, but ensuring that objects are thread-safe is not with
mainstream programming languages. That's why PostSharp extends C# and VB with thread-safety features.

• 7 different threading models. Threading models are design patterns that guarantee your code executes
safely even when used from multiple threads. Threading models raise the level of abstraction at which multi-
threading is addressed. Unlike working directly with locks and other low-level threading primitives, threading
models decrease the number of lines of code, the number of defects and reduce development and
maintenance costs – without having to have expertise in multi-threading. Includes:

1. Immutable Threading Model. Allows you to make select objects in your codebase immutable so
that they can be safely accessed by several threads concurrently, without the need for locking or
other synchronization.

2. Freezable Threading Model. This is the milder brother of the Immutable pattern. It is suitable when
you need to prevent changes to an instance of an object most of, but not all of the time. Lets you
define the point in time where immutability begins.

3. Synchronized Threading Model. Makes sure the objects are accessed by a single thread at a time.
Other threads will wait until the object is available so you'll avoid data races.

4. Reader-Writer Synchronized Threading Model. This pattern relies on the fact that most objects are
much more often read than modified. Compared to traditional locking, it maximizes read throughput
and minimizes the odds of deadlocks.

5. Actor Threading Model. Actors are classes that essentially run within a single thread. Other code
communicates with actors using asynchronous calls. Celebrated by Erlang, Scala and F# developers,
this pattern is now available to .NET thanks to PostSharp and C# 5.0.

6. Thread Affine Threading Model. Limits object instance access to the thread that created the
instance.

7. Thread Unsafe Threading Model. Perfect pattern to make sure that objects will never be accessed
concurrently by several threads. Get an exception instead of a random data corruption.

• Model validation. Catches most defects during build or during single-threaded test coverage.
• Thread dispatching patterns. Causes the execution of a method to be dispatched to the UI thread or to a

background thread. Much easier than using nested anonymous methods.
• Deadlock detection. Causes an easy-to-diagnose exception in case of deadlock instead of allowing the

application to freeze and create user's frustration.

Maintain your existing codebase in C# or Visual Basic
Despite the hype around functional programming languages, C#/VB and .NET remain an excellent platform for
enterprise development. PostSharp respects your technology assets and will work incrementally with your existing code
base – there is NO need for a full rewrite or redesign.

• Design neutrality. Unlike alternatives, PostSharp takes minimal assumptions on your code. It does not force
you to adopt any specific architecture or threading model. You can add aspects to anything, not just interface/
virtual methods. Plus, it is fully orthogonal from dependency injection. You don't have to dissect your
application into components and interfaces in order to use PostSharp.

• Plain C# and VB. PostSharp provides advanced features present in F#, Scala, Nemerle, Python, Ruby or Java-
Script, but your code is still 100% C# and VB, and it is still compiled by the proved Microsoft compilers.

• Cross-platform. PostSharp supports the .NET Framework, Windows Phone, WinRT, Xamarin and Portable Class
Libraries.

• Standard skillset. No complex API. Reuse what you already know from C# and System.Reflection.

Benefits of PostSharp vs Alternatives

17

Benefit from much better run-time performance
Start-up latency, execution speed and memory consumption matter. Whether you're building a mobile app or a back-
end server, PostSharp delivers exceptional run-time performance.

• Build-time code generation. Unlike proxy-based solutions, PostSharp modifies your code at build time. It
also allows for much more powerful enhancements that produces dramatically faster applications.

• No reflection. PostSharp does not rely on reflection at run-time. The only code that is executed is what you
can see with a decompiler.

• Build-time initialization. Many patterns make decisions based on the shape of the code which they are
applied. With PostSharp, you can analyze the target code at build-time and store the decisions into serializable
fields. At runtime, the aspects will be deserialized and you won't need to analyze the code at run-time using
reflection.

Why to Use PostSharp

18

CHAPTER 3

How Does PostSharp Work

On a conceptual level, you can think of PostSharp as an extension to the C# or VB compiler. Practically, Microsoft's
compilers themselves are not extensible, but the build process can be easily extended. That's exactly what PostSharp is
doing: it inserts itself in the build process and post-processes the output of the compiler.
This topic contains the following sections:

• MSBuild Integration on page 19
• MSIL Rewriting on page 19

MSBuild Integration
PostSharp integrates itself in the build process thanks to PostSharp.targets, which is imported into each project using
PostSharp by the NuGet installation script install.ps1. PostSharp.targets adds a few steps to the build process. The
principal step is the post-processing of the compiler's output by PostSharp itself.
See Configuring Projects Using MSBuild on page 85 for details.

MSIL Rewriting
PostSharp post-processes the compiler output by reading and disassembling the intermediate assembly, execute the
required transformations and validations, and rewriting the final assembly to disk.
Although this might sound magic or dangerous, PostSharp's MSIL technology is stable and mature, and has been used
by tens of thousands of projects since 2004. Other .NET products relying on MSIL transformation or analysis include
Microsoft Code Contracts, Microsoft Code Analysis, and Microsoft Code Coverage.

3.1. Key Technologies
PostSharp combines several technologies to leverage design pattern automation:

• Metaprogramming on page 19
• Aspect-Oriented Programming on page 20
• Static Program Analysis on page 20
• Dynamic Program Analysis on page 20

Metaprogramming
Metaprogramming is the writing of a program that analyzes and transforms itself or other programs. PostSharp
internally represents a .NET program as a mutable .NET object model, so PostSharp can be considered a metapro-
gramming tool for .NET.
However, general metaprogramming (the ability to perform arbitrary modifications on a program) is a highly complex
discipline. Although it may seem easy to perform simple modifications on simple programs, it is actually much more
difficult to implement non-trivial transformations that work in all cases. Metaprogramming can result in a decrease in

Key Technologies

19

productivity when used improperly and it is very difficult, for application developers who lack specific training in
compilers and metaprogramming, to use it properly.
Since general metaprogramming is too complex and too low level, we need a higher layer of abstraction that makes it
easier and safer to express program transformations. Essential qualities of this abstraction layer would include safe
composition of several transformations on the same declaration and restrictions on changing the program semantics.
Aspect-Oriented Programming fulfills these qualities as a disciplined approach to metaprogramming.

Aspect-Oriented Programming
PostSharp Aspect Framework is built on the principle of Aspect-Oriented Programming (AOP), a well-established
programming paradigm, orthogonal to (and non-competing with) object-oriented programming or functional
programming, that allows to modularize the implementation of some features that would otherwise cross-cut a large
number of classes and methods.
We can confidently say that PostSharp is the most advanced AOP framework for Microsoft .NET.
For details on PostSharp's implementation of AOP, see Developing Custom Aspects on page 263.

Static Program Analysis
Static program analysis is the analysis of a program without executing it.
There are two families of static analysis tools:

• Structural static analysis tools analyze the program's declarations and instructions, but do not attempt to
understand the run-time behavior of the program. Microsoft Code Analysis belongs to this category.

• Behavioral static analysis tools are based on iterative techniques like abstract interpretation, model checking or
data-flow analysis. Behavioral static analysis is much more complex and time consuming. Microsoft Code
Contracts belong to this category.

PostSharp contains tools for structural static analysis only. These tools consist in complete access of the System.
Reflection model of the assembly being built, navigating through code relationships using the ReflectionSearch
facility, and an expression tree decompiler.
The most important use case for static analysis in PostSharp is when writing aspects, in order to determine how the
target program should be transformed. Any of the static analysis tools can be used to build aspects. This contrasts with
other AOP implementation like AspectJ, which defines its own specific language (pointcut language) to select target
declarations.
Aspects like NotifyPropertyChangedAttribute or threading models make advanced use of static analysis.

A secondary role for static analysis is architecture validation. This role is marketed as the PostSharp Architecture
Framework, which defines a notion of architectural constraint. see Validating Architecture on page 357 for more
information.

Dynamic Program Analysis
Dynamic program analysis is the analysis of a program during its execution. Dynamic analysis is often used to detect
issues early, before they cause bigger damage. A typical example of dynamic analysis is the one that occurs when an
object is cast to a type: when the safety of the type conversion cannot be proved using static analysis, the type
conversion must be verified at runtime, and an InvalidCastException is thrown when an invalid cast is detected.

PostSharp uses dynamic analysis to check the program against threading models. Since many model properties cannot
be reliably verified at build time, they must be enforced at runtime. For instance, with the Synchronized threading
model, accessing a field without owning access to the object would result in a ThreadAccessException. For details, see
Writing Thread-Safe Code with Threading Models on page 211.
Another example of use of dynamic program analysis in PostSharp is deadlock detection. For details, see Detecting
Deadlocks at Runtime on page 253.

How Does PostSharp Work

20

In PostSharp, dynamic analysis is achieved by adding instrumentation aspects to the program.

Key Technologies

21

How Does PostSharp Work

22

CHAPTER 4

How to Learn PostSharp

A PostSharp implementation project is typically composed of three phases, in which three roles typically interact differently
with the product. Each role requires different skills and knowledge. We have created a learning path for each of these roles.
Depending on your team's organization, you may be involved in one or more roles.

Topic Description
Architecture Role: Selecting and Creating
Aspects on page 23

In the first phase, the team learns about the concepts and abilities of
PostSharp, and identify how it could fit into the application's design and
architecture. The team selects the ready-made aspects that will be used in the
application and, when no ready-made aspects can be used, it creates custom
aspects or architecture rules.
People in this role are typically called architects, technical leads or senior
developers. They must acquire an extensive knowledge of PostSharp and their
decisions affect the whole team's productivity.

Deployment Role: Installing and
Deploying PostSharp on page 25

The next typical step is to deploy PostSharp into your development
infrastructure and configure licensing. PostSharp works mostly out of the box
for individual developers and small teams, but you may want some planning if
you are responsible for a complex solution.

Developer Role: Using
Aspects on page 25

Your team is finally ready to use PostSharp on a daily basis. At this point,
typically, the team already knows which aspects will be used and when and
how they will be used. As a developer who will use existing aspects, you don't
need to invest a large amount of effort to learn PostSharp upfront. However,
you will need to understand the aspects that have been selected by the team,
and how to apply them to a code base.

4.1. Architecture Role: Selecting and Creating Aspects
The first step in the process of adopting PostSharp is typically to understand what the product can do for you and why you
should use (or not use) its features. This activity is typically part of the architecture role.
As you will see, PostSharp offers a set of pre-built aspects implementing some of the most common patterns. As an
architect, you will need to understand what these aspects can do for you and how they could fit and simplify your
architecture.
However, standard patterns are only the top of the iceberg. To cover your specific needs, PostSharp includes construction
kits that allow you to build you own pattern automation, namely the PostSharp Aspect Framework and the PostSharp
Architecture Framework. Determining the need for custom aspects or architecture validation rules is typically also a part of
the architecture role.

Architecture Role: Selecting and Creating Aspects

23

In a typical team, only a few people must be able to create custom aspects or architecture rules. These people must have a
deeper understanding of PostSharp than the developers who will only use existing aspects and rules. This is why this skill
set is included in the current section.

NOTE
When writing this section, we realized that the current documentation has some serious weaknesses regarding conceptual
and architectural materials. This is why we are also referring to other resources hosted on our web site.

Introduction
Understanding the principles behind PostSharp will give you a foundation to build on. All patterns and techniques used
by PostSharp relate back to this foundation.

Topic Articles
About PostSharp Why to Use PostSharp on page 13

How Does PostSharp Work on page 19
Requirements and Compatibility on page 43

More About Design Pattern Automation Article: Design Pattern Automation1

More About Aspect-Oriented Programming Aspect-Oriented Programming in Microsoft .NET2

White Paper: Producing High-Quality Software with
Aspect-Oriented Programming3

Selecting pre-built pattern implementations
PostSharp offers a number of different pre-built patterns. The following documentation will outline how to use each of
the available patterns.

Topic Articles
General patterns Contracts on page 157

Parent/Child Relationships on page 127
User interface patterns Understanding the NotifyPropertyChanged

Aspect on page 120
Understanding the Recordable Aspect on page 153

Multi-threading White Paper: Threading Models for Object-Oriented
Programming4

Detecting Deadlocks at Runtime on page 253
Dispatching a Method to the UI Thread on page 251
Dispatching a Method to Background on page 249

Diagnostics Logging on page 167

1. http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
2. http://www.postsharp.net/aop.net
3. http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-

Oriented%20Programming.pdf
4. http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf

How to Learn PostSharp

24

http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf
http://www.postsharp.net/downloads/documentation/Design%20Pattern%20Automation.pdf
http://www.postsharp.net/aop.net
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Producing%20High-Quality%20Software%20with%20Aspect-Oriented%20Programming.pdf
http://www.postsharp.net/downloads/documentation/Threading%20Models%20for%20OOP.pdf

Creating automation for custom patterns
PostSharp's built-in patterns won't cover all scenarios in your codebase that can benefit from AOP. Learn how to build
custom patterns using the same foundational components as are used for the built-in patterns.

Topic Articles
Aspects Developing Custom Aspects on page 263
Architecture Validation Validating Architecture on page 357

4.2. Deployment Role: Installing and Deploying PostSharp
This section describes how to deploy PostSharp in different situations. Read it if you are responsible to integrate process
into your build process.

Topic Articles
Deploying to the Development Environment Installing PostSharp Tools for Visual Studio on page 47

Installing PostSharp Into a Project on page 47
Deploying License Keys on page 67
Uninstalling PostSharp on page 58

Deploying to the Build Infrastructure Using PostSharp on a Build Server on page 54
Restoring Packages at Build Time on page 54
Using PostSharp with Visual Studio Online on page 55

Deploying to Production or End-User Devices Deploying PostSharp to End-User Devices on page 64
Deploying to Large or Regulated Development
Environments

License Audit on page 71
Using PostSharp License Server on page 77
Upgrading Large Repositories from a Previous Version of
PostSharp on page 56

4.3. Developer Role: Using Aspects
Using aspects requires much less training than creating new ones. In typical large teams, only a few developers or architects
develop new aspects, while the rest of the team uses existing aspects. This section focuses on the skill set that you need to
acquire if you have to be able to use PostSharp aspects but don't need to create your own.
In this session, we also assume that PostSharp has been properly deployed into your development and build environments.

NOTE
You can of course learn PostSharp as much as you want. The role of this section is to provide a short list of articles to
minimize your learning curve and get you productive as quickly as possible, but this should not stop you from learning
and experimenting more.

Deployment Role: Installing and Deploying PostSharp

25

This topic contains the following sections:
• Installing and upgrading PostSharp
• Working with pre-built patterns
• Working with Patterns

Installing and upgrading PostSharp
Every process has a starting point. Learn how to add PostSharp to your project so that you can get started with
improving your codebase.

Topic Articles
Install PostSharp to your machine Requirements and Compatibility on page 43

Installing PostSharp Tools for Visual Studio on page 47
Add PostSharp to a project and keep it up-to-date Installing PostSharp Into a Project on page 47

Upgrading from a Previous Version of
PostSharp on page 56

Working with pre-built patterns
PostSharp offers a number of different pre-built patterns. You will need to learn those that will be used in your
application.

Topic Articles
Diagnostics Logging on page 167
Code Contracts Contracts on page 157
INotifyPropertyChanged INotifyPropertyChanged on page 107
Aggregatable Parent/Child Relationships on page 127
Disposable Walkthrough: Automatically Disposing Children

Objects on page 132
Undo and Redo Undo/Redo on page 143
Threading Models Writing Thread-Safe Code with Threading

Models on page 211
Freezable on page 212, Immutable on page 216,
Actor on page 220, Reader/Writer
Synchronized on page 225, Synchronized on page 229,
Thread-Unsafe on page 233, Thread Affine on page 236
Compatibility of Threading Models on page 243
Opting In and Out From Thread Safety on page 242

Deadlock Detection Detecting Deadlocks at Runtime on page 253
Dispatching Threads Dispatching a Method to the UI Thread on page 251

Dispatching a Method to Background on page 249
Architecture Validation Restricting Interface Implementation on page 357

Controlling Component Visibility Beyond Private and
Internal on page 361

How to Learn PostSharp

26

Working with Patterns
The following resources are for all aspects. You can save a great amount of time in learning to master them.

Topic Articles
Adding aspects to several declarations Adding Aspects Declaratively Using

Attributes on page 186
Resolving Errors Working with Errors, Warnings, and Messages on page 97

Developer Role: Using Aspects

27

How to Learn PostSharp

28

CHAPTER 5

What's New in PostSharp

PostSharp has been around since the early days of .NET 2.0 in 2004. Since the first version, many features have been added
to make PostSharp the most popular and by far the most powerful tool for aspect-oriented programming and design
pattern automation in .NET.
This chapter contains the following sections:

• What's New in PostSharp 4.3 on page 29
• What's New in PostSharp 4.2 on page 31
• What's New in PostSharp 4.1 on page 33
• What's New in PostSharp 4.0 on page 33
• What's New in PostSharp 3.1 on page 35
• What's New in PostSharp 3.0 on page 36
• What's New in PostSharp 2.1 on page 37
• What's New in PostSharp 2.0 on page 38
• What's New in PostSharp 1.5 on page 40

5.1. What's New in PostSharp 4.3
The objective of PostSharp 4.3 is to address the most important concerns of current PostSharp customers. We focused on
improving the existing features without adding brand new ones.
PostSharp 4.3 includes the following improvements:

• Improved build-time performance on page 29
• Improved debugging experience on page 30
• More flexible deployment on page 30
• Improvements in the NotifyPropertyChanged aspect on page 30
• Simplified licensing of PostSharp Express on page 30
• Source code sharing with non-licensed teams on page 30
• Automatic computing of build-time assembly binding redirections on page 30

Improved build-time performance
We understand that nobody likes to wait for the build to complete, so we've been working hard to optimize PostSharp's
build performance. PostSharp 4.3 is up to 1.5 times faster than PostSharp 4.2 (the improvement is especially visible in
large projects) and you don't need to change anything in your code.

What's New in PostSharp 4.3

29

But there's more. PostSharp 4.3 introduces a new feature called solution-wide build optimizations, which can double the
build speed in large solutions. Since this feature can break custom build-time logic, it is disabled by default. For details,
see Reducing Build Time on page 100.

Improved debugging experience
Debugging an application enhanced with aspects is now even easier thanks to the following improvements:

• Full support for Just My Code.
• During Step Into, aspect code is now stepped over by default.
• The call stack no longer contains PostSharp implementation details by default.

To learn more about the new debugging behaviors and how to disable them, see Debugging Run-Time Aspect
Logic on page 352.

More flexible deployment
PostSharp 4.3 brings more freedom when it comes to deployment and installation:

• Alternative to NuGet. Between versions 3.0 and 4.2, the PostSharp compiler and libraries were only
distributed as NuGet packages. Starting from version 4.3, we are re-introducing the old good zip file, and
integrate it better with PostSharp Tools for Visual Studio. See Installing PostSharp without NuGet on page 48
for details.

• Command Line Tool. Using PostSharp as a command-line tool is now a supported and documented scenario.
For details, see Executing PostSharp from the Command Line on page 65

• PostSharp Tools for Visual Studio no longer required. You will now be able to build a project that uses
PostSharp without having PostSharp Tools installed in Visual Studio. The tooling is still highly recommended
but no longer strictly required.

Improvements in the NotifyPropertyChanged aspect
PostSharp 4.3 brings two improvements to the NotifyPropertyChangedAttribute aspect:

• Support for Caliburn.Micro and MVVM Light. See Integrating with UI Frameworks on page 117.
• Option to avoid false positives. See Suppressing False Positives on page 124 for details.

Simplified licensing of PostSharp Express
The limitations of PostSharp Express, the free edition of PostSharp, are now clearer and easier to understand and
remember. For details, see Limitations of PostSharp Express on page 71.

Source code sharing with non-licensed teams
You no longer need a PostSharp license to build code that someone else wrote and uses PostSharp. A license is only
required for code that you build or edited yourself. See Sharing Source Code With Unlicensed Teams on page 72 for
details.

Automatic computing of build-time assembly binding redirections
It is no longer necessary to manually create an assembly binding redirection file for PostSharp. For details, see
Resolution of assembly binding redirections on page 99.

What's New in PostSharp

30

5.2. What's New in PostSharp 4.2
With PostSharp 4.2, we had two major objectives. The first was to dogfood our Threading Models into PostSharp Tools for
Visual Studio, which pushed us to add many improvements both to the threading aspects and to the underlying aspect
framework. The second focus was to expose code saving metrics, so you know how many lines of code you likely saved
thanks to PostSharp. Additionally, we kept up with Microsoft and implemented support for the Elvis operator in Notify-
PropertyChanged, and added experimental support for ASP.NET v5.
PostSharp 4.2 includes the following improvements:

• Improvements to Aggregatable Pattern on page 31
• Improvements to NotifyPropertyChanged on page 31
• Improvements to Threading Models on page 32
• Improvements to the Aspect Framework on page 32
• Improved Support for Visual Basic on page 32
• Code Saving Metrics on page 32
• Module Initializers on page 32
• Support for IncrediBuild (Experimental) on page 33
• Support for ASP.NET v5 (Experimental) on page 33

Improvements to Aggregatable Pattern
We added the following improvements to the Aggregatable pattern and to other patterns that depend on it:

• New advisable class AdvisableHashSetT in replacement of HashSetT.

• New methods to the AdvisableCollectionT class: AddRange(IEnumerableT), InsertRange(Int32,
IEnumerableT), RemoveRange(Int32, Int32).

• Support for immutable collections like ImmutableArray or ImmutableDictionary.

• Support for type adapters to allow third-party classes (at least read-only ones) to work with the Aggregatable
pattern. See TypeAdapter for details.

• Ability to programmatically and automatically mark a field as child or reference without having to use a
custom attribute in source code. See FieldRule for details.

• Performance improvement: memory no longer needs to be allocated at runtime after objects are constructed,
resulting in lower load on garbage collection.

• New extensions methods for advisable collections. See Extensions.

Improvements to NotifyPropertyChanged
Improvements include to NotifyPropertyChangedAttribute include:

• Support for the Elvis operator (?.) and properties of local variables.

• Notification of the PropertyChanging event. See Implementing INotifyPropertyChanging on page 113 for
details.

• Better error messages.
• Inclusion of property dependencies in Visual Studio tooltips.
• Performance improvement: memory no longer needs to be allocated at runtime after objects are constructed,

resulting in lower load on garbage collection.

What's New in PostSharp 4.2

31

Improvements to Threading Models
Improvements to threading models include:

• Performance improvement: memory no longer needs to be allocated at runtime after objects are constructed,
resulting in lower load on garbage collection.

• Several performance improvements regarding the instantiation of large object graphs. See Run-Time
Performance of Threading Model on page 247 for details.

• New ThreadSafetyPolicy attribute to emit warning when a class is not assigned to any threading model or
when a static field is not of a thread-safe type. See Making a Whole Project or Solution Thread
Safe on page 240 for details.

• Better support for async methods: for lock-based models, locks are being awaited asynchronously instead of
synchronously. These new high-performance advices are not yet fully implemented and tested for general use,
therefore they are unsupported (except when they are used with our ready-made patterns) and undocu-
mented.

• Complete dogfooding in our PostSharp Tools for Visual Studio, resulting in dozen of bug fixes and usability
improvements.

• In the actor model, methods with non-void return type are now allowed and their execution will be done in
the actor context, but the calling thread will wait synchronously for the execution to complete. Void but non-
async methods must now be annotated with [Dispatched] (and until the next major version) to specify if
execution must be synchronous or asynchronous.

Improvements to the Aspect Framework
Improvements to the aspect framework include:

• New advice OnAspectsInitializedAdvice invoked after all aspects on the current objects have been
initialized.

• Ability to customize the description of aspects and advices in Visual Studio tooltips. See Customizing Aspect
Description in Tooltips on page 328 for details.

• In the OnMethodBoundaryAspect and related aspects, ability to yield (await) a state machine upon on entry and
resume.

CAUTION NOTE
To support performance improvements in ready-made patterns, we included a new family of advices that accept
context on the stack instead of the heap.

Improved Support for Visual Basic
Visual Basic is now supported and tested at the same level as C# both in PostSharp Compiler and PostSharp Tools for
Visual Studio.

Code Saving Metrics
PostSharp will now estimate the number of hand-written lines of code and the number of lines of code that you likely
saved using PostSharp. For details, see Estimating Code Savings on page 329.

Module Initializers
You can now define methods that get executed immediately after the assembly is loaded, before any other code is
executed. See Executing Code Just After the Assembly is Loaded on page 207 and ModuleInitializerAttribute for
details.

What's New in PostSharp

32

Support for IncrediBuild (Experimental)
If you use IncrediBuild, PostSharp can now be executed on a remote computer. Please contact PostSharp support for
details.

Support for ASP.NET v5 (Experimental)
You can now use PostSharp in ASP.NET v5 code. The support is currently limited to the .NET Framework (CoreCLR is not
supported). Support is not built-in in the normal PostSharp distribution. You need to download the PostSharp.Dnx
project from GitHub. Please see https://github.com/postsharp/PostSharp.Dnx for details.

5.3. What's New in PostSharp 4.1
The focus of PostSharp 4.1 was to broaden the set of supported platforms for both PostSharp, with the addition of Xamarin
and Visual Studio 2015, and improvements in the support of Windows Phone and Windows Store.
PostSharp 4.1 includes the following improvements:

• Support for Xamarin on page 33
• Threading Pattern Library: support for Windows Phone and Windows Store on page 33
• Support for Visual Studio 2015 on page 33
• PostSharp Assistant on page 33

Support for Xamarin
Xamarin has become an inseparable part of the .NET ecosystem and was the number-one feature request of the Post-
Sharp community. PostSharp 4.1 makes it possible to build applications for iOS and Android using Xamarin.
Note that Xamarin applications must be built using Visual Studio. Xamarin Studio is not supported.

Threading Pattern Library: support for Windows Phone and Windows Store
Threading Pattern Library newly supports Windows Phone, Windows Store and Xamarin. This allows you to create
thread-safe applications for both Windows and Windows Phone (both Silverlight and WinRT) in the same way as for
desktop applications.

Support for Visual Studio 2015
PostSharp Tools for Visual Studio have been almost completely rewritten to take advantage of the new compiler family
"Roslyn" at the heart of Visual Studio 2015. New features include integration with the light bulb (instead of the smart
tag), live code diagnostics and a few refactorings.

PostSharp Assistant
PostSharp Assistant guides you when you are implementing various patterns from Pattern Libraries so that you don't
miss any detail. For instance, it would point at relevant documentation articles or at pieces of code that need to be fixed.
PostSharp Assistant is supported in Visual Studio 2015.

5.4. What's New in PostSharp 4.0
The principal focus of PostSharp 4 was to redesign the Threading Pattern Library from the ground up and make it a real
solution to write thread-safe code with C# and VB. Additionally, we've introduced the undo/redo feature into the Model

What's New in PostSharp 4.1

33

https://github.com/postsharp/PostSharp.Dnx

Pattern Library. To achieve these objectives properly, we had to implement a good old concept from UML and object-
oriented modeling: aggregation and composition. We introduced significant improvements in the PostSharp Aspect
Framework to support these new features.
PostSharp 4.0 includes the following improvements:

• Aggregatable pattern on page 34
• Disposable pattern on page 34
• Immutable threading model on page 34
• Freezable threading model on page 34
• Synchronized threading model on page 34
• Redesign of reader-writer-synchronized, actor, and thread-unsafe threading models on page 34
• Recordable pattern (undo/redo) on page 34
• Dynamic location imports on page 35
• Aspect repository on page 35
• OnInstanceConstructed advice on page 35
• InitializeAspectInstance advice on page 35
• NotifyPropertyChanged optimization on page 35

Aggregatable pattern
As it turns out, multiple patterns rely on the notion of parent-child relationships. These concepts are a part of the UML
specification, where it is known as aggregation, but even modern programming languages don't implement the notions.
We fixed that in PostSharp 4.0 with our AggregatableAttribute aspect. For details, see Parent/Child
Relationships on page 127.

Disposable pattern
Once we have a notion of parent-child relationship, it is easy to build an aspect that recursively disposes a whole object
tree. This is our DisposableAttribute aspect. For details, see Walkthrough: Automatically Disposing Children
Objects on page 132.

Immutable threading model
The Immutable patterns made functional languages popular for its great usefulness in multi-threaded programs.
Unfortunately, the concept has traditionally been difficult to object-oriented programming. PostSharp 4.0 provides a
pragmatic implementation with the ImmutableAttribute aspect. For details, see Immutable Threading
Model on page 216.

Freezable threading model
Even a well-implemented Immutable pattern can be too strict for some object-oriented scenarios. In this case, the
Freezable patterns may be more suitable. Based on the Aggregatable pattern, the FreezableAttribute aspect makes it
possible to build freezable object trees. For details, see Freezable Threading Model on page 212.

Synchronized threading model
A threading model library could not be complete without it, so we added the SynchronizedAttribute aspect. For
details, see Synchronized Threading Model on page 229.

Redesign of reader-writer-synchronized, actor, and thread-unsafe threading models
We took the right way in PostSharp 3.0 with threading models, but the vision was not yet fully consistent and the
implementation was only partial. With PostSharp 3.2, we felt we had a better understanding of what we wanted to
achieve, and completely revisited our threading models. Based on the Aggregatable pattern, and based on a consistent
object model, the Threading Pattern Library is now much more powerful and consistent.

Recordable pattern (undo/redo)
The RecordableAttribute aspect, together with the Recorder class, make is possible to implement an undo/redo
feature at the domain level.

What's New in PostSharp

34

Dynamic location imports
To allow to import several fields and properties into a single aspect field (which was not possible using ImportMember-
Attribute, we added the IAdviceProvider interface and the ImportLocationAdviceInstance class.

Aspect repository
The new IAspectRepositoryService service exposes the list of all aspects added to the code model, both using custom
attributes or IAspectProvider, and offer a way to execute validation logic after all aspects have been discovered.

OnInstanceConstructed advice
The OnInstanceConstructedAdvice custom attribute allows you to define an advice that is executed after the instance
constructor exits.

InitializeAspectInstance advice
The InitializeAspectInstanceAdvice custom attribute allows you to define an advice that is similar to Runtime-
InitializeInstance but passes information about the reason why the aspect is initialized (constructor, clone, deseral-
ization).

NotifyPropertyChanged optimization
Our NotifyPropertyChangedAttribute is four times faster at runtime on average.

5.5. What's New in PostSharp 3.1
PostSharp 3.1 builds on the vision of PostSharp 3.0, but makes it more convenient to use. It also catches up with the C#
compiler features, and add more flexible licensing options.
PostSharp 3.1 includes the following improvements:

• Better support for iterator and async methods on page 35
• Improved configuration system on page 35
• Build-time performance improvement on page 36
• Resolution of file and line of error messages on page 36
• Indentation in logging on page 36
• Separate licensing of Pattern Libraries on page 36

Better support for iterator and async methods
When you applied an OnMethodBoundaryAspect to a method that was compiled into a state machine, whether an
iterator or an async method, the code generated by PostSharp would not be very useful: the aspect would just be
applied to the method that implements the state machine. An OnException advice had no chance to get ever fired.
Starting from PostSharp 3.1, OnMethodBoundaryAspect understands that is being applied to a state machine, and works
as you would expect.

Improved configuration system
PostSharp 3.1 makes it easier to share configuration across several projects. For instance, you can now add aspects to all
projects of a solution in just a few clicks. This is not just a UI tweak. This scenario has been made possible by significant
improvements in the PostSharp configuration system:

• Support for solution-level configuration files (SolutionName.pssln), and well-known configuration files
(postsharp.config) additionally to project-level files (ProjectName.psproj). See Working with PostSharp Configu-
ration Files on page 89 for details.

What's New in PostSharp 3.1

35

• Support for conditional configuration elements
• Support for XPath in expressions (instead of only property references as previously). See Using Expressions in

Configuration Files on page 95 for details.

Build-time performance improvement
PostSharp can now optionally install itself in GAC and generate native images. This decreases build time of a fraction of
a second for each project: a substantial gain if you have a lot of projects.

Resolution of file and line of error messages
When previous versions of PostSharp had to report an error or a warning, it would include the name of the type and/or
method causing the message, but was unable to determine the file and line number. You can now double-click on an
error message in Visual Studio and you’ll get to the relevant location for the error message.

Indentation in logging
For better log readability, PostSharp Diagnostics Pattern Library now automatically indents log entries when entering
and exiting methods.

Separate licensing of Pattern Libraries
PostSharp Pattern Libraries can now be purchased separately, so you don't have to buy the full PostSharp Ultimate if
you just want to use INotifyPropertyChanged. The licensing system has been modified to support this scenario.

5.6. What's New in PostSharp 3.0
The focus in PostSharp 3.0 was to deliver more value to customers with less initial learning. Instead of having to learn the
product before being able to build aspects, customers can now choose from a set of ready-made implementations of some
of the most popular design pattern, and apply them to their application from the Visual Studio code editor, using smart
tags and wizards. We also improved support for Windows Phone, Silverlight, Windows Store and Portable Class Library.
PostSharp 3.0 includes the following improvements:

• Model Pattern Library on page 36
• Diagnostics Pattern Library on page 36
• Threading Pattern Library on page 37
• Smart tags and wizards in Visual Studio on page 37
• Better platform support through Portable Class Libraries on page 37
• Unified deployment through NuGet and Visual Studio Gallery on page 37
• Transparency to obfuscators on page 37
• Deprecation of old platforms on page 37

Model Pattern Library
The NotifyPropertyChangedAttribute aspect is a ready-made implementation of the NotifyPropertyChanged design
pattern. The PostSharp.Patterns.Contracts namespace provides code contracts that can validate, at runtime, the
value of a parameter, a property, or a field.

Diagnostics Pattern Library
The LogAttribute and LogExceptionAttribute aspects provide a ready-made and high-performance implementation
of a tracing aspect. They are compatible with the most popular logging framework, including log4net, nlog, and
Enterprise Library.

What's New in PostSharp

36

Threading Pattern Library
PostSharp Threading Pattern Library invites you to raise the level of abstraction in which multi-threading is being
addressed. It provides three threading models: actors (Actor), reader-writer synchronized (ReaderWriterSynchronized-
Attribute) and thread unsafe (ThreadUnsafeAttribute). Additionally, BackgroundAttribute and Dispatched-
Attribute allow you to easily dispatch a thread back and forth between a background and the UI thread.

Smart tags and wizards in Visual Studio
Smart tags allow for better discoverability of ready-made aspects and pattern implementations. When the aspect
requires configuration, a wizard user interface collects the parameters and then generates the proper code.

Better platform support through Portable Class Libraries
Windows Phone, Windows Store and Silverlight are now first-class citizens. All features that are available for the .NET
Framework now also work with these platforms. All platforms are supported transparently through the portable class
library. To provide this feature, we had to develop the PortableFormatter, a portable serializer similar in function to the
BinaryFormatter. All you have to do is to replace [Serializable] with [PSerializable].

Unified deployment through NuGet and Visual Studio Gallery
Installation of PostSharp is now unified and built on top of Visual Studio Gallery and NuGet Package Manager.

Transparency to obfuscators
PostSharp no longer requires specific support from obfuscators, as it no longer uses strings to refer to metadata
declarations.

Deprecation of old platforms
Support for Silverlight 3, .NET Compact Framework, and Mono has been deprecated.

5.7. What's New in PostSharp 2.1
The objective of release 2.1 was to fix a number of 'gray points' of the version 2.0, which added friction to the adoption
path of PostSharp, or even prevented people from using the product.
PostSharp 2.1 includes the following improvements:

• Build-time performance improvement on page 37
• Support for NuGet and improved no-setup experience on page 38
• Compatibility with obfuscators on page 38
• Extended reflection API on page 38
• Architectural validation on page 38
• Compatibility with Code Contracts on page 38
• Support for Silverlight 5.0 on page 38
• License server on page 38

Build-time performance improvement
We traded our old text-based compilation engine to a brand new binary writer.

What's New in PostSharp 2.1

37

Support for NuGet and improved no-setup experience
PostSharp 2.1 can be installed directly from NuGet5. Local installation is no longer a requirement to use the Visual
Studio Extension. However, because the setup program creates ngenned images, it still provides the faster experience.

Compatibility with obfuscators
PostSharp can now be used jointly, and without limitation of features, with some obfuscators.

Extended reflection API
The class ReflectionSearch allows you to programmatically navigate the structure of an assembly: find custom
attributes of a given type, find children of a given type, find members of a given type, find methods referring a given
type or members, or find members accessed from a given method.

Architectural validation
Architecture Validation allows you annotate your code with constraints, which define the conditions in which your API is
allowed to be used. Constraints are verified at build time and their violation generates a build warning and an error. See
Validating Architecture on page 357 for details.

Compatibility with Code Contracts
PostSharp 2.1 can be used jointly with Microsoft Code Contracts. Aspects and contracts can be applied to the same
method.

Support for Silverlight 5.0
Silverlight 5.0 is added to the list of supported platforms.

License server
The license server helps customer manage and deploy license keys. The license server is a simple ASP.NET application
that can be deployed easily on any Windows machine. Its use is optional.

5.8. What's New in PostSharp 2.0
PostSharp 1.0 and 1.5 made aspect-oriented programming (AOP) popular in the .NET community. PostSharp 2.0 makes it
mainstream by enhancing convenience (Visual Studio Extension), reliability (dependency enforcement), run-time
performance (optimizer), and features (composite aspects, property- and event-level aspects).
PostSharp 2.0 includes the following improvements:

• Visual Studio Extension on page 39
• Composite aspects (advices and pointcuts) on page 39
• Adaptive code generation on page 39
• Interception aspect for fields and properties on page 39
• Interception aspect for events on page 39
• Aspect dependencies on page 39
• Instance-scoped aspects on page 39
• Support for new platforms on page 39
• Build performance improvements on page 39

5. http://www.nuget.org/List/Packages/PostSharp

What's New in PostSharp

38

http://www.nuget.org/List/Packages/PostSharp
http://www.nuget.org/List/Packages/PostSharp

Visual Studio Extension
As developers start being comfortable with PostSharp and add more and more aspects to their code, two questions
become manifest: How can I know to which elements of code my aspect has been applied? How can I know which
aspects have been applied to the element of code I am looking at? Answering these two questions is precisely what the
PostSharp Extension for Visual Studio 2008 and 2010 has been designed for. It provides two new features to the IDE: an
Aspect Browser tool window, and new adornments of enhanced elements of code with clickable tooltip.

Composite aspects (advices and pointcuts)
Part of the success of PostSharp 1.5 was due to its ability to introduce aspects without appealing to barbaric terms such
as advices and pointcuts. So why to introduce them now? Because they make it easier to develop complex aspects.
Thanks to advices and pointcuts, you can implement complex patterns such as observability awareness (INotifyProperty-
Changed) with just a few lines of code. And just with PostSharp 1.5, you can still write your own aspects without
knowing about advices and pointcuts.

Adaptive code generation
PostSharp 2.0 generates much smarter, faster, and smaller code than before. Let's face it: PostSharp 1.5 was quite dumb.
It generated a lot of instructions that your aspects did not even need. PostSharp 2.0 analyzes your aspect to see which
features are actually being used at runtime, and generates only instructions that support these features. Result: you
could probably not write much faster code by hand.

Interception aspect for fields and properties
PostSharp 2.0 comes with a new kind of aspect that handles fields and properties: LocationInterceptionAspect (in
replacement of OnFieldAccessAspect). The aspect is much more usable than its predecessor; for instance, it is possible
to call the field or property getter from the setter.

Interception aspect for events
The new aspect kind EventInterceptionAspect allows an aspect to intercept all event semantics: add, remove, and fire.

Aspect dependencies
By enforcing aspect dependency rules, PostSharp ensures that aspects behave in a predictable and robust way, even
when multiple aspects are applied to the same element of code. This feature is important for large and complex
projects, where aspects may be written by different teams, or provided by numerous third-party vendors who don't
know about each other.

Instance-scoped aspects
In PostSharp 1.5, all aspects had static scope, i.e. there was a single instance of the aspect for every element of code to
which they applied. It is now possible to define aspects that have instance lifetime. For instance, if the aspect is applied
to an instance field, a new instance of the aspect will be created for every instance of the type declaring the field. This is
named an instance-scoped aspect.

Support for new platforms
• Microsoft .NET Framework 4.0
• Microsoft Silverlight 3.0
• Microsoft Silverlight 4.0
• Microsoft Windows Phone 7 (Applications and Games)
• Microsoft .NET Compact Framework 3.5
• Novell Mono 2.6

Build performance improvements
Just starting the CLR and loading system assemblies takes considerable time, too much for an application (such as Post-
Sharp) that is typically started very frequently and whose running time is just a couple of seconds. To cope with this
issue, PostSharp now preferably runs as a background application

What's New in PostSharp 2.0

39

5.9. What's New in PostSharp 1.5
PostSharp 1.5 was published 3 years after the start of the project, and was the first release to be really production-ready.
PostSharp 1.5 includes the following improvements:

• Aspect inheritance on page 40
• Reading assemblies without loading them in the CLR on page 40
• Lazy loading of assemblies on page 40
• Build-time performance improvement on page 40
• Support for Mono on page 40
• Support for Silverlight 2.0 and the Compact Framework 2.0 on page 40
• Pluggable aspect serializer & partial trust on page 40

Aspect inheritance
It is now possible to put an aspect on an interface and have it implicitly applied to all classes implementing that
interface. The same works with classes, virtual or interface methods, and parameters of virtual or interface methods.
Read more...

Reading assemblies without loading them in the CLR
In version 1.0, PostSharp required assemblies to be loaded in the CLR (i.e. in the application domain) to be able to read
them. This limitation belongs to the past. When PostSharp processes a Silverlight or a Compact Framework assembly, it
is never loaded by the CLR.

Lazy loading of assemblies
When PostSharp has to load a dependency assembly, it now reads only the metadata objects it really needs, resulting in
a huge performance improvement and much lower memory consumption.

Build-time performance improvement
The code has been carefully profiled and optimized for maximal performance.

Support for Mono
PostSharp is now truly cross-platform. Binaries compiled on the Microsoft platform can be executed under Novell Mono.
Both Windows and Linux are tested and supported. A NAnt task makes it easier to use PostSharp in these environments.

Support for Silverlight 2.0 and the Compact Framework 2.0
You can add aspects to your projects targeting Silverlight 2.0 or the Compact Framework 2.0.

Pluggable aspect serializer & partial trust
Previously, all aspects were serializers using the standard .NET binary formatter. It is now possible to choose another
serializer or implement your own, and enhance assemblies that be executed with partial trust.

What's New in PostSharp

40

PART 2

Deployment and
Configuration

CHAPTER 6

Deployment

PostSharp has been designed for easy deployment in typical development environments. Over the years, source control and
build servers have become the norm, so we optimized PostSharp for this deployment scenario.

In this section
Topic Description
Requirements and Compati-
bility on page 43

This topic describes the software requirements of PostSharp and discusses
compatibility issues with other tools and libraries.

PostSharp Components on page 46 This topic list the different components of PostSharp, which may be used and
installed separately.

Installing PostSharp Tools for Visual
Studio on page 47

This topic shows how to install PostSharp Tools for Visual Studio onto your
machine.

Installing PostSharp Into a
Project on page 47

This topic shows how add PostSharp to a project.

Installing PostSharp without
NuGet on page 48

This topic explains how to add PostSharp to a project without relying on
NuGet.

Using PostSharp on a Build
Server on page 54

This section covers a few questions that arise when using PostSharp on a build
server.

Upgrading from a Previous Version of
PostSharp on page 56

This section explains how to upgrade from a previous version of PostSharp.

Uninstalling PostSharp on page 58 This section explains how to remove PostSharp from your projects and from
your machine.

Deploying PostSharp to End-User
Devices on page 64

This section describes what needs to be done when you deploy applications
using PostSharp to your end users.

Executing PostSharp from the
Command Line on page 65

This section shows how to use PostSharp as a command-line tool, instead of
using the default MSBuild integration.

6.1. Requirements and Compatibility
You can use PostSharp to build applications that target a wide range of target devices. This article lists the requirements on
development, build and end-user devices.
This topic contains the following sections:

• Requirements on development workstations and build servers on page 44
• Requirements on end-user devices on page 44
• Compatibility with ASP.NET on page 45

Requirements and Compatibility

43

• Compatibility with Microsoft Code Analysis on page 45
• Compatibility with Microsoft Code Contracts on page 45
• Compatibility with Obfuscators on page 45
• Known Incompatibilities on page 45

Requirements on development workstations and build servers
The following software components need to be installed before PostSharp can be used:

• Microsoft Visual Studio 2012 or 2013, 2015 except Express editions, but including Community Edition (Visual
Studio is not required on build servers).

• .NET Framework 4.5.
• Windows Vista SP2, Windows 7 SP1, Windows 8, Windows 8.1, Windows Server 2003 SP2, Windows Server

2003 R2 SP2, Windows Server 2008 SP2, Windows Server 2008 R2 SP1, Windows Server 2012, Windows Server
2012 R2.

• NuGet Package Manager 2.2 or later.

NOTE
The latest version of NuGet Package Manager will be installed automatically by PostSharp if NuGet 2.2 is not already
installed. This operation requires administrative privileges.

CAUTION NOTE
NuGet Package Manager needs to be configured manually in order to match the requirements of some corporate
environments, especially in situations with a large number of Visual Studio solutions. Please contact our technical
support if this is a concern for your team.

Requirements on end-user devices
The following table displays the versions of the target frameworks that are supported by the current release of Post-
Sharp and its components.

PostSharp Component .NET
Framework

Silverlight Windows Phone
(Silverlight)

Windows
Phone (WinRT)

Windows
(WinRT)

Xamarin

Aspect Framework 3.5 SP1, 4.0,
4.5, 4.6

4, 5 7, 8 8.1 8, 8.1 3.8

Architecture Framework 3.5 SP1, 4.0,
4.5, 4.6

4, 5 7, 8 8.1 8, 8.1 3.8

Diagnostics Pattern Library 4.0, 4.5, 4.6 - - - - -
Model Pattern Library 4.0, 4.5, 4.6 - 8 8.1 8, 8.1 3.8
Threading Pattern Library 4.0, 4.5, 4.6 - 8 8.1 8, 8.1 3.8
Threading Pattern Library -
Deadlock Detection

4.0, 4.5, 4.6 - - - - -

NOTE
PostSharp supports Portable Class Library projects that target frameworks shown in the table.

Deployment

44

Compatibility with ASP.NET
There are two ways to develop web applications using Microsoft .NET:

• ASP.NET Application projects are very similar to other projects; they need to be built before they can be
executed. Since they are built using MSBuild, you can use PostSharp as with any other kind of project.

• ASP.NET Site projects are very specific: there is no MSBuild project file (a site is actually a directory), and
these projects must not be built. ASP.NET Site projects are not supported.

Additionally, ASP.NET "vNext", which has a different project system than MSBuild, is not supported.

Compatibility with Microsoft Code Analysis
By default, PostSharp reconfigures the build process so that Code Analysis is executed on the assemblies as they were
before being enhanced by PostSharp. If you are using Code Analysis as an integrated part of Visual, no change of
configuration is required.
You request the Code Analysis to execute on the output of PostSharp by setting the ExecuteCodeAnalysisOnPost-
SharpOutput MSBuild property to True. For more information, see Configuring Projects Using MSBuild on page 85.

Compatibility with Microsoft Code Contracts
PostSharp configures the build process so that Microsoft Code Contracts is executed before PostSharp. Additionally,
Microsoft Code Contracts' static analyzer will be executed synchronously (instead of asynchronously without PostSharp),
which will significantly impact the build performance.

Compatibility with Obfuscators
Starting from version 3, PostSharp generates assemblies that are theoretically compatible with all obfuscators.

CAUTION NOTE
PostSharp 3 generates constructs that are not emitted by Microsoft compilers (for instance methodof). These unusual
constructs may reveal bugs in third-party tools, because they are generally tested against the output of Microsoft
compilers.

Known Incompatibilities
PostSharp is not compatible with the following products or features:

Product or Feature Reason Workaround
Visual Studio 2010 Not Supported Use PostSharp 3.1.
ILMerge Bug in ILMerge Use another product (such as SmartAssembly).
Edit-and-Continue Not Supported Rebuild the project after edits
Silverlight 3 or earlier No longer under Microsoft

mainstream support
Use PostSharp 2.1 or Silverlight 5

Silverlight 4 No longer under Microsoft
mainstream support

Use PostSharp 3.1 or Silverlight 5

.NET Compact Framework No support for PCL Use PostSharp 2.1 or Windows Phone 8

.NET Framework 2.0 No longer under Microsoft
mainstream support

Target .NET Framework 3.5 or use PostSharp 3.1

Windows Phone 7 No longer under Microsoft
mainstream support

Target Windows Phone 8 or use PostSharp 3.1

Requirements and Compatibility

45

Product or Feature Reason Workaround
Mono Not Supported Compile on Windows using MSBuild
Visual Studio Express Microsoft's licensing policy Use Visual Studio Community Edition
Delayed strong-name
signing on cloud build
servers

No way to unregister verifi-
cation of strong names

Use normal (non-delayed) strong-name signing or use
build servers where you have administrative access.

ASP.NET Web Sites Not built using MSBuild Convert the ASP.NET Web Site to an ASP.NET Web
Application.

6.2. PostSharp Components
PostSharp is composed of the following components:

Component Name Component Kind Description
PostSharp Tools for Visual
Studio

Visual Studio Extension This is the user interface of PostSharp. It extends the Visual Studio
editor, improves the debugging experience, and provides a new
menu, option pages, toolbox windows, smart tags. We strongly
recommend to install PostSharp Tools for Visual Studio on each
developer workstation.

PostSharp NuGet Package This is the core of PostSharp. It contains the PostSharp compiler,
the MSBuild integration (the PostSharp.targets file is added to your
projects upon installation of the PostSharp package), and the
facade library PostSharp.dll, which exposes features to developers:

• PostSharp Aspect Framework allows you to automate the
implementation of other code patterns and address code
repetitions that are specific to your own applications, or
simply that are not available off-the-shelf in a pattern
library. For more information, see sections Developing
Custom Aspects on page 263 and Adding Aspects to
Code on page 185.

• PostSharp Architecture Framework allows you to
automate the validation of design pattern implemen-
tations, to enforce design intend, or simply to verify
coding guidelines. The framework allows you to create
constraint classes that encapsulate the validation logic
and that can be applied to code artifacts. The framework
provides tools to analyze the relationships between code
artifacts and have access to the AST of method bodies.
For more information, see section Validating
Architecture on page 357.

PostSharp Common Pattern
Library

NuGet Package This package contains definitions and aspects that are shared by
other pattern libraries, including:

• Aggregatable pattern: see Parent/Child
Relationships on page 127 for details.

• Basic definitions for threading aspects.

Deployment

46

Component Name Component Kind Description
PostSharp Model Pattern
Library

NuGet Package This package contains the following features:
• NotifyPropertyChanged aspect: see INotifyProperty-

Changed on page 107 for details.
• Recordable pattern for undo/redo: see Undo/

Redo on page 143 for details.
• Code contracts: see Contracts on page 157 for details.

PostSharp Model Pattern
Library (Controls)

NuGet Package This package contains the undo/redo buttons for WPF. See
Adding Undo/Redo to the User Interface on page 145 for details.

PostSharp Threading Pattern
Library

NuGet Package This package contains all threading aspects and their
infrastructure, including:

• All threading models: see Writing Thread-Safe Code with
Threading Models on page 211 for details.

• Thread dispatching aspects: see Dispatching a Method
to Background on page 249 and Dispatching a Method
to the UI Thread on page 251 for details

• Deadlock detection: see Detecting Deadlocks at
Runtime on page 253 for details.

PostSharp Diagnostics
Pattern Library

NuGet Package This package contains the logging aspect. See Walkthrough:
Adding Detailed Tracing to a Code Base on page 167 for details.

6.3. Installing PostSharp Tools for Visual Studio
PostSharp Tools for Visual Studio are PostSharp's user interface. Install them on a developer's computer, does not affect the
projects until the PostSharp NuGet package has been added to this project. See Installing PostSharp Into a
Project on page 47 for details.

To install PostSharp Tools for Visual Studio:
1. Download the file PostSharp-X.X.X.exe from http://www.postsharp.net/download.
2. Run the file PostSharp-X.X.X.exe.
3. Start Visual Studio.
4. Complete the configuration wizard. You will be asked to enter a license key or to start the trial period. The wizard

may ask the permission to install NuGet Package Manager or to uninstall the user interface of PostSharp.

6.4. Installing PostSharp Into a Project
The compiler components of PostSharp are distributed as a NuGet package named simply PostSharp. If you want to use
PostSharp in a project, you simply have to add this NuGet package to the project.
This topic contains the following sections:

• Adding PostSharp to a project on page 48

Installing PostSharp Tools for Visual Studio

47

http://www.postsharp.net/download

• Including files in source control on page 48

Adding PostSharp to a project
To add PostSharp to a project:

1. Open the Solution Explorer in Visual Studio.
2. Right-click on the project.
3. Click on Add PostSharp.

TIP
Remember that adding PostSharp to a project just means adding the PostSharp NuGet package. If you want to add
PostSharp to several projects in a solution, it may be easier to use NuGet to manage packages at solution level. You
may need to select the Include Prerelease option to install a prerelease version of PostSharp.

TIP
NuGet Package Manager can be configured using a file named nuget.config, which can be checked into source control
and can specify, among other settings, the location of the package repository (if it must be shared among several
solutions, for instance) or package sources (if packages must be pre-approved). See NuGet Configuration File6 and Nu-
Get Configuration Settings7 for more information.

Including files in source control
After you add PostSharp to a project, you need to add the following files to source control:

• packages.config

• *.psproj

• *.pssln

Optionally, you can also include the packages folder in source control. Note that some people advise against this
practice. If you choose not to include the packages folder in source control, read Restoring Packages at Build
Time on page 54.
Once you have all of these files include in your source code repository any other developer getting that source code
from the repository will have the required information to be able to build the application.

6.5. Installing PostSharp without NuGet
The most common way to add PostSharp to your project is by installing PostSharp NuGet packages. The main benefit of
using NuGet Package Manager is that it provides a standard way to install and manage all dependencies for your .NET
projects. NuGet, however, also comes with some disadvantages that are inherent in its design (as described by NuGet team
in the post NuGet: Broken By Design8):

• hard-coded dependency versions inside project files;

6. http://docs.nuget.org/docs/reference/nuget-config-file
7. http://docs.nuget.org/docs/reference/nuget-config-settings
8. http://blog.nuget.org/20141010/nuget-is-broken.html

Deployment

48

http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
http://docs.nuget.org/docs/reference/nuget-config-settings
http://blog.nuget.org/20141010/nuget-is-broken.html
http://docs.nuget.org/docs/reference/nuget-config-file
http://docs.nuget.org/docs/reference/nuget-config-settings
http://blog.nuget.org/20141010/nuget-is-broken.html

• more frequent merge conflicts in project files;
• unexpected and unwanted auto-upgrades of the dependencies;
• additional overhead in software configuration management;
• the lack of global package installation option.

For some development teams these NuGet disadvantages become a significant obstacle for NuGet adoption in their
projects. This is especially true when strict dependency versioning policies are in place.
If using NuGet Package Manager in your project is not a viable option, then you can install PostSharp without NuGet by
following the procedures described in this article. The first time you want to add PostSharp to a project without NuGet, you
must first enable PostSharp installation without NuGet. Then, you can specify a folder on your hard drive where PostSharp
files will be copied. The next time you will add PostSharp to a project, the same folder can be used.
This topic contains the following sections:

• Adding PostSharp without NuGet into a first project in a solution on page 49
• Adding PostSharp to a second or next project in the same solution on page 51
• Sharing the same PostSharp installation folder in several solutions on page 51
• Removing PostSharp from a project without NuGet on page 52
• Updating PostSharp to a newer version on page 53
• See Also on page 0

Adding PostSharp without NuGet into a first project in a solution
This is the procedure to install the PostSharp package into a new folder on your computer and reference this package
from your project. If you have an existing PostSharp installation, see Sharing the same PostSharp installation folder in
several solutions on page 51.

To install PostSharp into a folder without NuGet:
1. By default, PostSharp is always installed using NuGet Package Manager. To change this option, on the Post-

Sharp menu in Visual Studio, click Options, then on the General page of the options dialog select the check
box "Always ask before using NuGet Package Manager".

2. Right click on your project in the solution explorer and then click "Add PostSharp to Project". The PostSharp
package installation wizard opens.

Installing PostSharp without NuGet

49

3. On the first page of the wizard click "Install PostSharp <version> into a new folder and reference it".

4. Set the "Path to PostSharp folder". The PostSharp package will be unpacked into this folder. The installer
does not overwrite the contents of the target folder, so you need to delete the folder contents if you want to
replace the existing installation.

5. Change the additional installation options, if needed:
◦ Store relative path - indicates whether to store relative or absolute paths for PostSharp references

and imports in your project files. By default, the relative paths are stored.
◦ Use the same options for all projects in the current solution - if enabled, the path to the Post-

Sharp package folder is stored in the <SolutionName>.pssln file. Next time you add PostSharp to
another project in the same solution, the package path will be reused and you won’t need to type it
again. Disable this option if projects in your solution need to reference different versions of Post-
Sharp package (not recommended).

6. Click Next and finish the wizard.

As a result of this procedure:
• the PostSharp files will be copied into the selected folder;
• the PostSharp assembly reference will be added to your project;

Deployment

50

• the PostSharp.targets file import will be added to your project file.

<ImportProject="..\..\..\postsharp\Tools\PostSharp.targets"/>

• your installation options will be stored in the MySolution.pssln file (given you have a solution file named My-
Solution.sln).

<PropertyName="PostSharpPackageManager"Value="Folder"/>
<PropertyName="PostSharpRootPath"Value="..\lib\PostSharp"/>

Adding PostSharp to a second or next project in the same solution
By default, PostSharp will use installation options stored in the MySolution.pssln file. It means that by default, all projects
in the same solution will use the same PostSharp installation folder. PostSharp will not show the wizard page asking
about the installation method.
If you want to specify different installation options for the next time you will add PostSharp to a project of this solution,
edit the MySolution.pssln file and remove the two following properties: PostSharpPackageManager and PostSharpRoot-
Path.

The next time you will try to install PostSharp, the wizard will now include the page asking about the installation
method.

Sharing the same PostSharp installation folder in several solutions
Once PostSharp is copied to any folder of your machine, you can use it in any project or solution.

To add PostSharp to a project and reference an existing PostSharp folder:
1. Right click on your project in the solution explorer and then click "Add PostSharp to Project". The PostSharp

package installation wizard opens.
2. On the first page of the wizard click "Reference an existing PostSharp folder".

Installing PostSharp without NuGet

51

3. Set the "Path to PostSharp folder". The path must point to the root folder of the PostSharp package. This is a
folder that contains lib and tools sub-folders.

4. Change the additional installation options, if needed:
◦ Store relative path - indicates whether to store relative or absolute paths for PostSharp references

and imports in your project files. By default, the relative paths are stored.
◦ Use the same options for all projects in the current solution - if enabled, the path to the Post-

Sharp package folder is stored in the <SolutionName>.pssln file. Next time you add PostSharp to
another project in the same solution, the package path will be reused and you won’t need to type it
again. Disable this option if projects in your solution need to reference different versions of Post-
Sharp package (not recommended).

5. Click Next and finish the wizard.

As a result of this procedure:
• the PostSharp assembly reference will be added to your project;

• the PostSharp.targets file import will be added to your project file.

<ImportProject="..\..\..\postsharp\Tools\PostSharp.targets"/>

• your installation options will be stored in the MySolution.pssln file (given you have a solution file named My-
Solution.sln).

<PropertyName="PostSharpPackageManager"Value="Folder"/>
<PropertyName="PostSharpRootPath"Value="..\lib\PostSharp"/>

Removing PostSharp from a project without NuGet
This is the procedure to uninstall PostSharp from your project if you have previously installed PostSharp package into
your project without NuGet.

To uninstall PostSharp without NuGet:
1. Open the properties window for your project in Visual Studio.

Deployment

52

2. On the PostSharp page of the properties window click "Remove PostSharp from this project" and follow the
wizard.

As a result of this procedure:
• the PostSharp assembly reference will be removed from your project;
• the PostSharp.targets file import will be removed from your project file.

Updating PostSharp to a newer version
The nice thing about the non-NuGet deployment is that updating PostSharp is so easy: you just have to extract the new
zip file into the PostSharp folder. But because we're trying to look serious and complete in this documentation, here is
the formal procedure:

To update PostSharp when you are not using NuGet:
1. Remove all files from the PostSharp folder.
2. Download the zip distribution from https://www.postsharp.net/downloads (a file named PostSharp-4.x.x.zip)
3. Extract the zip file into the PostSharp folder.

That's it!
While NuGet Package Manager represents a standard and proven way to manage your .NET project dependencies, you
can still find projects where using NuGet is not possible or causes too much overhead. PostSharp supports you by
providing an option to install without NuGet.

Installing PostSharp without NuGet

53

https://www.postsharp.net/downloads

6.6. Using PostSharp on a Build Server
PostSharp has been designed for frictionless use on build servers. PostSharp build-time components are deployed as NuGet
packages, and are integrated with MSBuild. No component needs to be installed or configured on the build server, and no
extra build step is necessary. If you choose not to check in NuGet packages in your source control, read Restoring Packages
at Build Time on page 54.

Installing a License on the Build Server
The License Agreement specifies that build servers don’t need their own license. PostSharp will not attempt to enforce
licensing if it detects that it runs in unattended mode. PostSharp uses several heuristics to detect whether it is running
unattended. These heuristics include the use of Environment.UserInteractive, checking Process.SessionId (from
Windows Vista, all processes running in session 0 are unattended), or checking the parent process.
If this check does not work for any reason, you may use the license key of any licensed user for the build server. This will
not be considered a license infringement. However, it is better to report the issue to our technical support so that we
can fix the detection algorithms.
It is recommended to include the license key in the source control. See Deploying License Keys on page 67 for details.
If you are using the license server, it is possible to configure it to provide license to build servers "for free", without
holding a license from the pool. See the configuration options of the license server in Installing and Servicing PostSharp
License Server on page 73 for details.

6.6.1. Restoring Packages at Build Time
NuGet Package Manager has the ability to restore packages from their repository during the build. This allows teams to
avoid storing NuGet packages in source repository.
You can restore the PostSharp package at build time as long as the package is restored before MSBuild is invoked to build
the project.
The reason is that PostSharp modifies the project file (csproj or vbproj, typically) to include the file PostSharp.targets. This file
is required during the build, otherwise PostSharp is not inserted in the build process, and simply does not work. Because of
the design of MSBuild, PostSharp.targets must be present when the build starts, so it cannot be restored from the package
repository during the same build. The build that triggers the package restore will fail, and subsequent builds will succeed.
This behavior is acceptable on developer workstations. However, on build servers, you must ensure that the packages are
restored before the project is built.

NuGet 2.7 and Later
To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command:

NuGet.exe restore MySolution.sln

In this command, where MySolution.sln is the solution for which packages have to be restored.
Please look at the NuGet Command-Line Reference9 for details.

9. http://docs.nuget.org/docs/reference/command-line-reference

Deployment

54

http://docs.nuget.org/docs/reference/command-line-reference
http://docs.nuget.org/docs/reference/command-line-reference

NuGet 2.0 to 2.6
To restore the PostSharp package at build time, add a preliminary step before building the Visual Studio solutions or
projects. This step should execute the following command for every packages.config file in your solution (typically, for
every project):

NuGet.exe install packages.config -OutputDirectory SolutionDirectory\packages

In this command, where SolutionDirectory\packages is the directory where the NuGet packages should be installed.
Please look at the NuGet Command-Line Reference10 for details.

TIP
You can use PowerShell or MSBuild to execute the nuget install command to all packages.config files in your source
repository.

6.6.2. Using PostSharp with Visual Studio Online
When hosting your source code on Visual Studio Online, adding PostSharp to the codebase is no different than for any
other build server situation.
Visual Studio Online offers an online build server environment. Once configured the build server will retrieve your source
code and compile the application for you. As part of this build process you will want any PostSharp aspects to be added in
the same way that it occurs on your local development machine. To do this you will have to ensure that your codebase
includes PostSharp as outlined in the Installing PostSharp Into a Project on page 47 section. You will also need to configure
a build definition as outlined in the Create or edit build definition11 article on MSDN.
Once you are able to successfully run the build you will want to review the build logs and verify the artifacts that were
created by that build. Here's how you can verify that your build included your PostSharp aspects.

Verifying Visual Studio Online Builds
1. To review the build logs, open the successful build.

10. http://docs.nuget.org/docs/reference/command-line-reference
11. http://msdn.microsoft.com/en-us/library/ms181716.aspx

Using PostSharp on a Build Server

55

http://docs.nuget.org/docs/reference/command-line-reference
http://msdn.microsoft.com/en-us/library/ms181716.aspx
http://docs.nuget.org/docs/reference/command-line-reference
http://msdn.microsoft.com/en-us/library/ms181716.aspx

2. Select the Diagnostics tab.

3. Ensure that the installation of PostSharp and any PostSharp patterns libraries that you used.

If you see entries like these in your build log you know that the build process correctly downloaded the PostSharp
components.
If you do not see any entries for the downloading of the PostSharp components you will want to ensure that the
packages.config file is correctly included in your source code repository and that the PostSharp dependencies are
referenced in the appropriate projects.

6.7. Upgrading from a Previous Version of PostSharp
This section explains how to upgrade from a previous version of PostSharp.
This topic contains the following sections:

• Upgrading PostSharp Tools for Visual Studio on page 57
• Upgrading solutions from PostSharp 3 or later on page 57
• Upgrading large repositories on page 57
• Upgrading solutions from PostSharp 2 on page 58

TIP
Other sections of this chapter, specifically Installing PostSharp Tools for Visual Studio on page 47, Deploying License
Keys on page 67 and Using PostSharp on a Build Server on page 54, are also useful if you need to upgrade from an earlier
version of PostSharp.

Deployment

56

Upgrading PostSharp Tools for Visual Studio
After you install PostSharp Tools for Visual Studio, you will still be able to open solutions that use older versions of Post-
Sharp.
PostSharp Tools for Visual Studio are backward compatible with older versions of PostSharp. However, several versions
of the extension cannot coexist. Therefore, installing a new version of PostSharp Tools will uninstall the previous version.
To upgrade PostSharp Tools for Visual Studio, simply download it from http://www.postsharp.net/download and
execute the installation package.

CAUTION NOTE
Upgrading PostSharp Tools for Visual Studio does not implicitly upgrade your source code.

Upgrading solutions from PostSharp 3 or later

CAUTION NOTE
Before you upgrade your project to a different major release of PostSharp, check that the new version still supports
your version Visual Studio and the target framework of your application. Check the release notes for an accurate
compatibility list of the specific version you are installing.

You can use several versions of PostSharp side-by-side on the same machine. However, it is recommended that you use
the same version in all projects of the same solution.

To upgrade a solution from PostSharp 3 or later:
1. Open the Solution Explorer in Visual Studio.
2. Right-click on the solution.
3. Click on Manage NuGet Packages for Solution.
4. Click on Updates.
5. Find the PostSharp package and click on Update.
6. Select all projects, click OK.
7. Repeat the operation for all PostSharp.Patterns.* packages.

Upgrading large repositories
If your source contains a large number of solutions, upgrading manually using NuGet may be too labor intensive. In this
situation, it is better to use our upgrade PowerShell script.

To upgrade a large number of solutions with the PowerShell script:
1. Download the following Git repository: https://github.com/sharpcrafters/PostSharp.Utilities. You can download

it manually from the web page or execute the following command:

git clone https://github.com/sharpcrafters/PostSharp.Utilities.git

2. Follow instructions on in README.md.

Upgrading from a Previous Version of PostSharp

57

http://www.postsharp.net/download
https://github.com/sharpcrafters/PostSharp.Utilities

CAUTION NOTE
This script does not support other platforms than the .NET Framework and does not support PostSharp Pattern
Libraries.

Upgrading solutions from PostSharp 2
Every project can have only references to a single version of PostSharp. This applies both to direct and indirect
references. The PostSharp 3 or later compiler is not backward compatible with PostSharp 2, and PostSharp 3 will refuse
to compile projects that have a reference to PostSharp 2. Therefore, you will typically use a single version of PostSharp
in every solution.
You can upgrade projects from PostSharp 2 to PostSharp 3 by adding the PostSharp NuGet package to these projects.

To upgrade a solution from PostSharp 2:
1. Open the Solution Explorer in Visual Studio.
2. Right-click on the solution.
3. Click on Manage NuGet Packages for Solution.
4. Click on Online.
5. In the search box, type PostSharp. You may want to select the Select prereleases option (instead of the

default Stable Only) to install a pre-release version of PostSharp.
6. Find the PostSharp package and click on Install.
7. Select all projects, click OK.

Although PostSharp 3 or later is mostly backward compatible with PostSharp 2 at source-code level, you may need to
perform small adjustments to your source code:

• Every occurrence of the _Assembly interface has been replaced by the Assembly classes. You may have to
change the signatures of some methods derived from AssemblyLevelAspect.

• Aspects that target Silverlight, Windows Phone or Windows Store must be annotated with the
PSerializableAttribute custom attribute.

• PostSharp Toolkits 2.1 need to be uninstalled using NuGet. Instead, you can install PostSharp Pattern Libraries
3 from NuGet. Namespaces and some type names have been changed.

6.8. Uninstalling PostSharp
If you make the decision to remove PostSharp from your project we are sorry to see you leave.
There are two scenarios you may want to consider: removing PostSharp from individual projects or solutions, and removing
PostSharp from Visual Studio.
This topic contains the following sections:

• Removing PostSharp from your projects and solutions on page 58
• Removing PostSharp from Visual Studio on page 61

Removing PostSharp from your projects and solutions
Here are some steps to follow to remove PostSharp from your project.

Deployment

58

CAUTION NOTE
As you'll see in these steps, removing the product from your project is not that difficult. However, replacing the
aspects that you were using will be a much more arduous task that will require a great deal of planning.
You will need to replace the aspects by hand-written source code that implement the same behaviors. Depending on
how intensively you used PostSharp, your codebase could significantly increase as a result of stopping using Post-
Sharp. Other products and frameworks that pretend to implement aspect-oriented programming actually only provide
a small subset of the features you are got used to with PostSharp.
Because every project will use aspects differently, and some will have custom aspects, we are unable to give procedural
advise on how to replace specific aspects.

To remove PostSharp from a project, you simply have to remove all PostSharp packages from it. The following
procedure demonstrates how to remove PostSharp for the whole solution.

Removing PostSharp with NuGet Packages Manager for Solution
1. Open the Package Manager for Solution windows

2. Select the All tab from the left side of the window.

Uninstalling PostSharp

59

3. Find the PostSharp packages in the list and select one of the PostSharp Library packages. Click the Manage
button.

NOTE
Start by selecting the PostSharp Library Packages and working in reverse dependency order. This will result in
the main PostSharp package being the last one that you select to remove.

4. Ensure that you uncheck all of the projects listed in the window and click OK.

5. Repeat steps 3 and 4 for each of the PostSharp packages that show in the Packages Manager for Solution
window.

6. To verify that all of the PostSharp packages have been removed from your codebase, ensure that there are no
PostSharp packages listed in the Packages Manager for Solution window.

Once you have removed all of the PostSharp packages from your codebase it is most probable that your application will
no longer compile. Compilation errors will be registered where PostSharp aspect attributes exist in the codebase as well
as where custom aspects were written. You will need to remove these entries from your codebase to get it to compile
again.
Simply deleting the offending code can accomplish this. You must remember that in the process of removing PostSharp
from your codebase these errors indicate locations where you are removing functionality from the codebase as well. If
the functionality that is being removed is required by the application you will need to determine how to provide that
functionality in the codebase going forward. This is the most difficult part of removing PostSharp from yoru codebase.

Deployment

60

Because aspects can be used in a multitude of different manners, and custom aspects can be created for any number of
different uses, there is no practical way to tell you how to replace the functionality being lost.

NOTE
You now have removed PostSharp from your codebase. At this point you are able to continue on your development
effort without making use of PostSharp.
If you would like to remove PostSharp from Visual Studio, proceed with the following steps.

Removing PostSharp from Visual Studio
Before you uninstall PostSharp Tools for Visual Studio, we suggest you remove the compiled images.

Removing Native Compiled Images
1. Open the Visual Studio Options dialog.

Uninstalling PostSharp

61

2. Expand the PostSharp node in the tree and select the Compiled Images node.

3. Select an entry in the listbox and click Uninstall.

4. Follow the wizard to uninstall the compiled images for the selection you made. There are no choices to be
made, simply click Next and Finish until the wizard is completed.

NOTE
You will need to perform the previous steps for each of the versions listed in the PostSharp Compiled Image
page in the Options dialog.

The next step is to remove PostSharp from Visual Studio.

Deployment

62

Uninstalling the PostSharp Tools for Visual Studio
1. Open the Extensions and Updates window.

2. Select the All tab on the left of the window.

3. Find the PostSharp entry, select it and click the Uninstall button.

Uninstalling PostSharp

63

4. Click Yes to confirm that you want to uninstall the PostSharp extension.

5. Repeat the two previous steps and uninstall the extension named PostSharp Backward Compatibility Tools.
6. Restart Visual Studio.

Finally, you can remove the temporary files created by PostSharp. These files would be recreated as necessary the next
time you run PostSharp.
Other than occupying disk space, there is no impact of not removing these files.

Cleaning temporary files
1. Open Windows Explorer and navigate to C:\ProgramData\PostSharp.

2. Select the C:\ProgramData\PostSharp folder and delete it.

6.9. Deploying PostSharp to End-User Devices
Although PostSharp is principally a compiler technology, it contains run-time libraries that need to be deployed along with
your application to end-user devices. These libraries are the ones included in the lib sub-directory of the NuGet packages
for the relevant target framework.
These run-time libraries can be distributed to end-users free of charge. However, the build-time parts of PostSharp cannot
be redistributed under the terms of the standard license agreement.
Besides including these run-time libraries, no other action or configuration is required.

Deployment

64

6.10. Executing PostSharp from the Command Line
You can execute PostSharp from the command line whenever you want to instrument an existing assembly – whether or
not you have the source code of that assembly.
PostSharp has been primarily designed as an extension to the C# and VB languages that automates the implementation or
validation of patterns. Most patterns need to be present for the application to work. Think for instance of INotify-
PropertyChanged. It does not make sense to have a build of your application that does not implement INotifyProperty-
Changed. Therefore, the best way to invoke PostSharp is to use the default MSBuild integration.

However, if you think of instrumentation aspects such as logging, tracing, performance measurement, then the situation is
different. It is perfectly valid to add logging to an existing assembly. In this case executing PostSharp from the command
line may be your best option.
In general, you can use the command-line interface in the following situations:

• When you have access to the source code of a project and you want to add instrumentation as a separate step,
instead of using the normal C#/VB project file.

• When you don’t have access to the source code of the assembly you want to instrument. In this case, make sure
your license allows you to modify the assembly.

Instrumenting assembly from the command line
To instrument assembly from the command line:

1. Download and extract PostSharp ZIP distribution.
a. Go to https://www.postsharp.net/downloads/.
b. Choose the desired version of PostSharp (only 4.3 or later).
c. Download the file named PostSharp-<version>.zip and extract it on your local machine.

Executing PostSharp from the Command Line

65

https://www.postsharp.net/downloads/

2. Create a PostSharp configuration file for your project (see Working with PostSharp Configuration
Files on page 89). These are the most common items to specify in the configuration file:

◦ Set the Input property to the file path of the input assembly (relative to the project file location).

◦ Set the Output property to the file path of the output assembly (relative to the project file location).

◦ Declare the aspects that you want to apply to your assembly (see Adding Aspects Using
XML on page 202).

◦ Add the SearchPath element to specify where PostSharp should look for assemblies and plug-ins (in
addition to PostSharp package directory and input assembly directory).

Example 1. Instrumenting assembly with the PostSharp logging aspect.

<Project xmlns="http://schemas.postsharp.org/1.0/configuration">
<Property Name="Input" Value="MyAssembly.dll" />
<Property Name="Output" Value="MyAssembly.Instrumented.dll" />
<Property Name="LoggingBackend" Value="Console" />
<Multicast>

<LogAttribute xmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics" />
</Multicast>

</Project>

Example 2. Instrumenting assembly with a custom aspect.

<Project xmlns="http://schemas.postsharp.org/1.0/configuration">
<Property Name="Input" Value="MyAssembly.dll" />
<Property Name="Output" Value="MyAssembly.Instrumented.dll" />
<SearchPath Path="C:\Path\MyAspects" />
<Multicast>

<ProfileAttribute xmlns="clr-namespace:MyAspects;assembly:MyAspects" />
</Multicast>

</Project>

3. Invoke PostSharp. PostSharp executables are located under the tools folder of the extracted archive. You can
choose between these two executables:

◦ postsharp-net40-x64-native.exe – use to transform x64 assemblies.
◦ postsharp-net40-x86-native.exe – use to transform any other assemblies.

To apply the transformation to your project, invoke the PostSharp executable and specify the path to the
project configuration file as a command line argument. For example:

c:\PostSharp\tools\postsharp-net40-x86-native.exe postsharp.config

Upon completing the instrumentation of your assembly, PostSharp will output the “complete” message with
the PostSharp version number and total numbers of errors and warnings, if any.

PostSharp 4.3 [4.3.x.0, postsharp-net40-x86-native.exe, CLR 4.0.30319.394254, Release] complete -- 0 errors, 2 warnings, processed in 1000 ms

You can also specify the input assembly as a command line argument. In this case PostSharp recognizes the
argument type based on the file name extension (e.g. *.config, *.pssln, *.psproj for project files, *.exe, *.dll for
input assemblies). The input assembly specified on the command line overrides the corresponding Input
property in the project file.

c:\PostSharp\tools\postsharp-net40-x86-native.exe postsharp.config MyAssembly.dll

By following the steps outlined in this article, you add instrumentation to an existing assembly without having to
recompile it from the source code.

Deployment

66

CHAPTER 7

Licensing

This chapter addresses some technical questions related to the licensing of PostSharp. For business questions, please refer
to our web site12.
It contains the following topics:

Chapter Description
Deploying License
Keys on page 67

This topic shows how each developer can install the license key using the UI and how
this can be done centrally by adding the license key to source control.

License Audit on page 71 This topic explains that PostSharp does not validate the license key in a blocking way,
but audits the use of license keys.

Limitations of PostSharp
Express on page 71

This topic explains the limitations of PostSharp Express.

Sharing Source Code With
Unlicensed Teams on page 72

This topic explains that you don't need to purchase a license if you need to build code
that you didn't write yourself but uses PostSharp.

Using PostSharp License
Server on page 77

This topic shows how users can obtain a license from a license server.

Installing and Servicing
PostSharp License
Server on page 73

This topic describes how system administrators can install and maintain the license
server.

7.1. Deploying License Keys
This section explains how to install PostSharp license keys.
Whether you are using a free or commercial edition, PostSharp requires you to enter a license key before being able to
build a project.
This topic contains the following sections:

• Registering a license key using the user interface on page 67
• Installing the license key in source control on page 70

Registering a license key using the user interface
Registering a license key using the user interface is the prefered procedures for individual developers and small teams.

12. https://www.postsharp.net/purchase/faq

Deploying License Keys

67

https://www.postsharp.net/purchase/faq
https://www.postsharp.net/purchase/faq

To register a license key using the user interface:
1. Open Visual Studio.
2. Click on menu PostSharp, then Options.
3. Open the License option page.
4. Click on the Register a license link.
5. Click on Register a license.

Licensing

68

6. Paste the license key and click Next .

Deploying License Keys

69

7. Read the license agreement and check the option I agree. Click on Next.

TIP
If you are registering the license key on a build server, also check the option Register these settings for all
accounts on this machine.

8. Click Next on the notice regarding license metering.

Installing the license key in source control
It is possible to install the license key in source control, so that these settings are automatically applied during the build.

To install the license the in source control:
1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory

of the Visual Studio project file (*.csproj or *.vbproj).
2. Add the following content to the postsharp.config file:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
<LicenseValue="000-AAAAAAAAAAAAAAA"/>

</Project>

In this code, 000-AAAAAAAAAAAAAAA must be replaced by the license key or the URL to the license server.

See Working with PostSharp Configuration Files on page 89 for details about this configuration file.

Licensing

70

7.2. License Audit
Although most software packages are protected with a license activation mechanism, we think that the practice is not
adequate for software development tools:

• Source code is sometimes compiled several years after it has been written, and there is no guarantee that the
license activation server will still be functional.

• Development teams want their tools to be included in the source control repository together with source code,
and want the license key to be deployed the same way.

Instead of license activation, PostSharp relies on asynchronous, fail-safe license audit. PostSharp audits the use of license
keys on each client machine and periodically reports it to our license servers. The mechanism does not require a permanent
network connection, and PostSharp will not fail if the license server is not available.
The licensing client will contact our licensing servers in the following cases:

• When a license is registered on a computer with the user interface.
• Once per week, for every user and every device using PostSharp.

No personally identifiable information is transmitted during this process except the license key. In case we suspect a rough
violation of the License Agreement, we reserve the right to contact the legitimate owner of this license.

TIP
If license audit is not acceptable in your company, please contact us with a request to disable license audit. Our sales
teams will evaluate your request and answer with a license key containing an audit waiver. Global licenses and site licenses
are not subject to license audit by default. The use of the license server does not implicitly disable license audit. For more
information, see Using PostSharp License Server on page 77.

7.3. Limitations of PostSharp Express
PostSharp Express contains almost all the features of PostSharp Ultimate, but the number of types to which you can apply
aspects is limited to 10 per project or 50 per solution.
To know how many types are already using aspects, open the PostSharp Metrics tool window in Visual Studio.
This topic contains the following sections:

• Limitations of PostSharp Architecture Framework on page 71
• Enforcement of the solution-level limit on page 72
• Backward compatibility with PostSharp 4.2 on page 72
• Diagnosing licensing issues on page 72

Limitations of PostSharp Architecture Framework
PostSharp Architecture Framework has no concept of aspect and no concept of aspect target, therefore the number of
types is computed differently. Instead, what is limited is the number of types for which you can call APIs like
ReflectionSearch or ISyntaxReflectionService.

License Audit

71

Enforcement of the solution-level limit
The limitation of 50 types per solution is implementing not by looking at the sln file, but by counting the number of
classes in all assemblies that are referenced by the current assembly. That is, the limit is actually 50 types in the whole
assembly closure.

Backward compatibility with PostSharp 4.2
Limitations of PostSharp Express changed between PostSharp 4.2 and PostSharp 4.3. If PostSharp detects that the
project has been upgraded from PostSharp 4.2 or earlier, the limitations of PostSharp Express 4.2 will be enforced in a
backward-compatible way. Please refer to PostSharp 4.2 documentation for details about PostSharp Express limitations
in this version.

Diagnosing licensing issues
If PostSharp is requiring a commercial license and you don't understand why, you can generate a licensing diagnostic
log by building your project with the following command line:

msbuild /p:PostSharpTraceLicensing=True

If you're calling the PostSharp command-line interface instead of the MSBuild integration, add the /TraceLicensing
argument.
The log file is created in the %ProgramData%\PostSharp\LicensingTrace directory. The full path to the log file is
mentioned in the build output.

7.4. Sharing Source Code With Unlicensed Teams
You only need a license if you create or modify code using PostSharp. If you only build code that is using PostSharp, you
don't need to purchase a license.
PostSharp can determine whether you modify the code or just build it by looking at your source control repository. If your
working copy has modifications against your base commit in your source control repository, PostSharp will consider that
you are creating or modifying the code yourself, and will require a valid license.
By default, checking the modifications in the source control is disabled for performance reasons. It means that by default
PostSharp always requires a valid license during build. You can enable source control checking by editing the PostSharp
Configuration File for your project or solution (see Working with PostSharp Configuration Files on page 89).

To enable source code sharing with unlicensed teams:
1. Open the file postsharp.config that is located in the root directory of your solution or project. If the file doesn't

exist then create a new postsharp.config file in that location with the following content:

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
</Project>

2. Add a Property element under the Project element, set the Name attribute to VcsCheckEnabled and the Value
attribute to True.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">

<PropertyName="VcsCheckEnabled"Value="True"/>
</Project>

Licensing

72

NOTE
The following source control systems are supported: Git and TFS. If you are not using any of these systems, PostSharp will
always require a license at build time.

7.5. Installing and Servicing PostSharp License Server
This topic covers PostSharp License Server from the point of view of the system administrator and license administrator.
We designed our license server to help our customers, not to enforce our license agreements. The application is not
obfuscated, it uses a clear SQL database and provides the ability to workaround issues by canceling leases or purging
tables.
This topic contains the following sections:

• System Requirements on page 73
• Installing PostSharp License Server on page 73
• Installing a license key on page 74
• Testing the license server on page 75
• Displaying license usage on page 75
• Canceling leases on page 76
• Maintenance on page 76

System Requirements
PostSharp License Server is an ASP.NET 4.0 application backed by a Microsoft SQL database.
It requires:

• Windows Server 2003 or later with Internet Information Services installed.
• Microsoft SQL Server 2005 or later (any edition, including the Express edition).

If the license server can be configured with a sufficiently long lease renewal period, there is no need to deploy the
application and its database in high-availability conditions. You need to plan that the amount of time between the lease
renewal and the lease end is larger than the longest expected outage. Frequent backups are not critical unless usage
information is required for accounting purposes in case of pay-as-you-use licenses, where the Export Logs feature is
required.

CAUTION NOTE
Deploying the ASP.NET application to several machines is not supported because the lease algorithm uses application
locking instead of database locking.

Installing PostSharp License Server
The setup procedure is simple but must be performed manually.
To install PostSharp License Server, you will need administrative access on a Windows Server machine and the
permission to create a new database.

Installing and Servicing PostSharp License Server

73

To install PostSharp License Server:
1. Download the latest version of PostSharp License Server from the PostSharp website. For version 3.1.44, the

URL is http://www.postsharp.net/downloads/postsharp-3.1/v3.1.44/SharpCraftersLicenseServer-3.1.44.zip. You
can open the download manager at http://www.postsharp.net/downloads/ and browse to the version you are
interested in.

NOTE
It is not necessary that the version of PostSharp License Server exactly matches the version of PostSharp. You
do not have to upgrade PostSharp License Server as long as the license keys you want to use are compatible
with the server version.

2. Using Internet Information Services (IIS) Manager, configure a new web application whose root is the folder
containing the file web.config.

3. The application pool should be configured to use ASP.NET 4.0.
4. Configure the authentication mode of the web application: disable Anonymous Authentication, and enable

Windows Authentication.
5. Create an MS SQL database (the free MS SQL Express server is supported).
6. Execute the script CreateTables.sql in the context of this database. The file is located in the zip archive of the

license server.
7. Set up security on this database so that the user account under which the ASP.NET application pool is running

(typically NETWORK SERVICE) can access the database.
8. Edit the file web.config:

a. configuration/connectionStrings: Correct the connection string (server name and database
name) to match your settings.

b. configuration/system.net/mailSettings: Set the name of the SMTP server used to send warning
emails.

c. configuration/applicationSettings: this section contains several settings that are documented
inside the web.config file. The most important settings are the email addresses for shortage notifi-
cations and the duration of leases duration and renewal delay.

d. configuration/system.web/authorization: Set up security of the whole application to restrict the
persons who are allowed to borrow a license. Optional.

e. configuration/location[@path='Admin']/system.web/authorization: Specify who has access to
the administrative interface of the application. Optional.

Installing a license key
Before developers can start using the license server, you need to install a license key.

To install a license key into the license server:
1. Open the home page of the license server using a web browser.
2. Click on the link Install a new license.

Licensing

74

http://www.postsharp.net/downloads/

3. Paste the license key and click on button Add.

Testing the license server
If you have installed the license server at the address http://localhost/PostSharpLicenseServer, you can test it opening the
URL http://localhost/PostSharpLicenseServer/Lease.ashx?product=PostSharp30&user=me&machine=other using Firefox or
Chrome. If the license acquisition was successful, the browser will display the license key and the duration of the lease.
You can also then see the resulting allocation on the home page http://localhost/PostSharpLicenseServer, and cancel the
lease.

Displaying license usage
PostSharp License Server makes it easy to know how many people are currently using the product, and to display
historical data.

Overview of installed license keys and current number of leases

Installing and Servicing PostSharp License Server

75

Detail of leases

History of license usage. The figure demonstrates a 30-day, +30% grace period.

Canceling leases
You can cancel a lease from the lease list by clicking on the Cancel hyperlink. Note that canceling a lease on the server
does not cancel the lease on the client. It is not possible to cancel leases on the client.

Maintenance
The license server is designed to keep a history of all leases. Therefore, it can grow indefinitely, depending on the
number of users and lease duration. It is safe to delete all records from the Lease table at any time, unless these records
are necessary for accounting purposes.
Using SQL Agent, you can schedule a job that purges old records of the Lease table:

DELETE FROM [dbo].[Leases] WHERE EndTime < DATEADD(day, -90, GETDATE());

Licensing

76

7.6. Using PostSharp License Server
If the license audit is not acceptable in your company for regulatory or other reasons, you can consider using the PostSharp
License Server.
PostSharp License Server is a server application that customers can install into on their own premises to measure the
number of concurrent users of PostSharp. The application is based on ASP.NET and Microsoft SQL Server.
This topic contains the following sections:

• Disclaimer on page 77
• Design Principles on page 77
• Subscribing to the license server on page 77
• Installing the license settings in source control on page 81

If you are a system administrator or license administrator, see also Installing and Servicing PostSharp License
Server on page 73.

Disclaimer
Using the license server is optional. Only a few enterprise customers chose to use it. Alternative approaches are:

• To rely on the default license audit mechanism (see License Audit on page 71 for details).
• To acquire enough licenses for the whole team with some reserve margin.
• To use a spreadsheet to keep track of who is using the software.
• To use other software audit products, although this approach is imperfect because PostSharp is not installed

on the developer's machine as a standalone and identificable application.

Design Principles
The license server manages leases of a license to a given user on a given machine (the “client”). Once the lease is
provided to the client, it is cached on the client. Upon client request, the server will return a license key and two dates:
the lease end date and the lease renewal date. The lengths of the lease and of the renewal period are configurable. The
client will not contact the license server before the renewal date, so the client can go offline during the duration of the
lease. Then, a new lease will be reserved for the client. If the client is not able to renew its lead from the server after the
lease renewal date, the client will still be able to use PostSharp until the end of the lease. Then, the use of PostSharp will
be prevented. To avoid loss of productivity due to lack of network connection or server outages, we recommend setting
a large delay between the lease renewal period and the lease period.
If the number of concurrent users exceeds the licensed number, the license administrator will receive an email, and
additional users will be allowed during a grace period. At the end of the grace period, only the licensed number of
concurrent users will be allowed. The duration of the grace period and the number of excess users depend on the kind
of license. By default, it is set to 30% of users and 30 days.

IMPORTANT NOTE
If you have subscribed to a license server, you will need periodic connections to the company network. The licensing
client will automatically try to renew a lease when it comes close to expiration and if the license server is available.
Lease duration and renewal settings can be configured by the administrator of the license server. A connection to the
license server is not necessary while the lease is valid.

Subscribing to the license server
If your company use PostSharp License Server, you can register using a similar procedure as for registering a license key:

Using PostSharp License Server

77

To subscribe to a license server using the user interface:
1. Open Visual Studio.
2. Click on menu PostSharp, then Options.
3. Open the License option page.
4. Click on the Subscribe to a license server link.

Licensing

78

5. Paste the URL of the license server. You can click on the Open hyperlink to verify that the URL is correct and
that you have access to it. Click Next.

Using PostSharp License Server

79

6. Read the license agreement and check the option I accept. Click on Next.

TIP
If you are registering the license server on a build server, also check the option Register the license for all
accounts on this machine.

Licensing

80

7. You are done.

Installing the license settings in source control
It is possible to subscribe to the license server using a file stored in source control by using the exact same mechanism
as to register a license key.

To install license settings in source control:
1. Create a file named postsharp.config in the root directory of your source repository, or in any parent directory

of the Visual Studio project file (*.csproj or *.vbproj).
2. Add the following content to the postsharp.config file:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"x:xmlns="http://schemas.postsharp.org/1.0/configuration">
<LicenseValue="http://server/path"/>

</Project>

In this code, http://server/path must be replaced by the URL to the license server.

See Working with PostSharp Configuration Files on page 89 for details about this configuration file.

Using PostSharp License Server

81

Licensing

82

CHAPTER 8

Configuration

For most use cases, PostSharp does not require any custom configuration. PostSharp gets its default configuration from
three sources:

• MSBuild integration. PostSharp gets most of its configuration settings directly from the parent MSBuild project.
• NuGet integration. Some PostSharp plug-ins delivered as NuGet packages may modify PostSharp configuration

files during installation.
• PostSharp Tools. When adding aspects and policies from Visual Studio, PostSharp may automatically modify

some configuration files.

Even if most configuration is correct by default, you may want to understand the configuration system to troubleshoot
configuration and installation issues, or simply to implement more advanced configuration scenarios.
PostSharp can be configured using the Visual Studio user interface, by editing MSBuild project files, or by editing PostSharp
configuration files.

8.1. Configuring Projects in Visual Studio
PostSharp accepts several configuration settings such as the version and processor architecture of the CLR that is used at
build time, the search path of dependencies, and whether some features are enabled.
Although the default configuration is appropriate for most situations, you may have to fine-tune some of them to cope with
particular cases.
Most common properties can be edited directly from Visual Studio using the PostSharp project property page.
This topic contains the following sections:

• Opening PostSharp project properties tab on page 83
• Understanding configuration settings on page 84

Opening PostSharp project properties tab
To open the PostSharp project property page in Visual Studio

1. Open the Solution Explorer.
2. Right-click on the project then select Properties at the bottom of the menu.
3. Select the PostSharp tab.

Configuring Projects in Visual Studio

83

The PostSharp property page in the Visual Studio project properties dialog.

Understanding configuration settings
Note that all settings are dependent on the selected project configuration (for instance Debug) and platform (for
instance Any CPU).

Setting Description
Disable
PostSharp

True if PostSharp should not execute in for the selected configuration and platform, otherwise False.
This setting maps to the MSBuild property SkipPostSharp.

Additional
search path

A semicolon-separated list of directories where plug-ins and libraries have to be searched for. This
property can reference other MSBuild properties, for instance: ..\MyWeaver\bin\$(Configuration). All
project references are already added to the search path by default. This setting maps to the MSBuild
property PostSharpSearchPath.

Additional
properties

A semicolon-separated list of property definition, for instance: Name1=Value1;Name2=Value2. This
property can reference other MSBuild properties, for instance: RootNamespace=$(RootNamespace).
Several properties are defined by default; for details, see Well-Known PostSharp Properties on page 94.
This setting maps to the MSBuild property PostSharpProperties

Suppress
warnings

A semicolon-separated list of warning identifiers that must be ignored, or * if all warnings have to be
ignored. This setting maps to the MSBuild property PostSharpDisabledMessages.

Treat
warnings as
errors

A semicolon-separated list of warning identifiers that must be escalated into errors, or * if all warnings
must be treated as errors. This setting maps to the MSBuild property PostSharpEscalatedMessages.

Architecture
Validation

Enabled if constraints must be validated, otherwise Disabled. The default value is Enabled. For details
regarding architecture validation, see Validating Architecture on page 357.

CLR Version The version of the CLR that hosts PostSharp. PostSharp currently only supports the CLR 4.0 so this
setting is disabled. This setting maps to the MSBuild property PostSharpTargetFrameworkVersion.

Configuration

84

Setting Description
Processor
Architecture

The processor architecture (x86 or x64) of the process hosting PostSharp. Since PostSharp needs to
execute the current project during build, the processor architecture of the PostSharp process must be
compatible with the target platform of the current project. The default value is x86, or x64 if the target
platform of the current project is x64. This setting maps to the MSBuild property PostSharpTarget-
Processor.

Build Host The kind of process hosting PostSharp, which influences the assembly loading mechanism, compatibility
and performance features. This setting maps to the MSBuild property PostSharpHost. For details, see
Configuring Projects Using MSBuild on page 85.

Optimization
Mode

When set to Build Time, PostSharp will use a faster algorithm to generate the final assembly. When set
to Size, PostSharp will use a slower algorithm that generates smaller assemblies. The default value is
Build Time by default, or Size when the C# or VB compiler is set to generate optimal code (typically, in
release builds). This settings maps to the MSBuild property PostSharpOptimizationMode.

8.2. Configuring Projects Using MSBuild
Most configuration settings of PostSharp can be set as MSBuild properties.

NOTE
The integration of PostSharp with MSBuild is implemented in files PostSharp.tasks and PostSharp.targets. These files define
some properties and items that are not documented here. They are considered implementation details and may change
without notice.

This topic contains the following sections:
• Setting MSBuild properties with a text editor on page 85
• Configuring several projects at a time on page 86
• Setting MSBuild properties from the command line on page 86
• List of properties on page 86

Setting MSBuild properties with a text editor
To set a property that persistently applies to a specific project, but not to the whole solution, the best solution is to
define it directly inside the C# or VB project file (*.csproj or *.vbproj, respectively) using a text editor.

Adding a project-level MSBuild property using Visual Studio
1. Open the Solution Explorer, right-click on the project name, click on Unload project, then right-click again

on the same project and click on Edit.
2. Insert the following XML fragment just before the <Import /> elements:

<PropertyGroup>
<PropertyName>PropertyValue</PropertyName>

</PropertyGroup>

See Configuring Projects Using MSBuild on page 85 for the list of MSBuild properties used by PostSharp.
3. Save the file. If the project was open in Visual Studio, go to the Solution Explorer, right-click on the project

name, then click on Reload project.

Configuring Projects Using MSBuild

85

NOTE
For more information regarding MSBuild properties, see MSDN Documentation13.

Configuring several projects at a time
Instead of editing every project file, you can define shared settings in a file named PostSharp.Custom.targets and store in
the same directory as the project file or in any parent directory of the parent file (up to 7 levels from the project
directory).
Files PostSharp.Custom.targets are loaded from the root directory to the project directory, so that files that are closer to
the project directory are loaded after and override files in parent directories.
Thanks to this mechanism, it is possible to define settings that apply to a large set of projects and control the grain of
settings.
Files PostSharp.Custom.targets are normal MSBuild project or targets files; they should have the following content:

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.microsoft.com/developer/msbuild/2003">

<PropertyGroup>
<PropertyName>PropertyValue</PropertyName>

</PropertyGroup>
</Project>

See Configuring Projects Using MSBuild on page 85 for the list of MSBuild properties used by PostSharp.

NOTE
For more information regarding MSBuild project files, see MSDN Documentation14.

Setting MSBuild properties from the command line
When an MSBuild property does not need to be set permanently, it is convenient to set is from the command prompt
by appending the flag /p:PropertyName=PropertyValue to the command line of msbuild.exe, for instance:

msbuild.exe /p:PostSharpHost=Native

List of properties

General Properties
The following properties are most commonly overwritten. They can also be edited in Visual Studio using the PostSharp
project property page.

Property Name Description
PostSharpSearchPath A semicolon-separated list of directories added to the PostSharp search

path. PostSharp will probe these directories when looking for an
assembly or an add-in. Note that several directories are automatically
added to the search path: the .NET Framework reference directory, the
directories containing the dependencies of your project and the
directories added to the reference path of your project (tab Reference
Path in the Visual Studio project properties dialog box).

13. http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
14. http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx

Configuration

86

http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx
http://msdn.microsoft.com/en-us/library/vstudio/ms171458.aspx
http://msdn.microsoft.com/en-us/library/vstudio/dd637714.aspx

Property Name Description
SkipPostSharp True if PostSharp should not be executed.

PostSharpOptimizationMode When set to OptimizeForBuildTime, PostSharp will use a faster algorithm
to generate the final assembly. The other possible value is
OptimizeForSize. The default value of the PostSharpOptimizationMode
property is OptimizeForBuildTime by default and OptimizeForSize when
the C# or VB compiler is set to generate optimal code (typically, in
release builds).

PostSharpDisabledMessages Comma-separated list of warnings and messages that should be
ignored.

PostSharpEscalatedMessages Comma-separated list of warnings that should be escalated to errors.
Use * to escalate all warnings.

PostSharpLicense License key or URL of the license server.

PostSharpProperties Additional properties passed to the PostSharp project, in format
Name1=Value1;Name2=Value2. See Well-Known PostSharp
Properties on page 94.

PostSharpConstraintVerificationEnabled Determines whether verification of architecture constraints is enabled.
The default value is True.

Hosting Properties
Because PostSharp not only reads, but also executes the assemblies it transforms, it must run under the proper version
and processor architecture of the CLR. Additionally, for each version and processor architecture. The following
properties allow to influence the choice of the PostSharp host process.

Property Name Description
PostSharpTargetFrameworkVersion Version of the CLR that hosts the PostSharp process. The only valid value is 4.0.

PostSharpTargetProcessor Processor architecture of the PostSharp hosting process. Valid values are x86
and x64. Since PostSharp needs to execute the current project during build, the
processor architecture of the PostSharp process must be compatible with the
target platform of the current project. The default value is x86, or x64 if the
target platform of the current project is x64.

Configuring Projects Using MSBuild

87

Property Name Description
PostSharpHost Kind of process hosting PostSharp. This setting is usually changed for

troubleshooting only. The following values are supported:
• PipeServer means that PostSharp will run as a background process

invoked synchronously from MSBuild. Using the pipe server results in
lower build time, since PostSharp would otherwise have to be started
every time a project is built. The pipe server uses native code and the
CLR Hosting API to control the way assemblies are loaded in
application domains; the assembly loading algorithm is generally more
accurate and predictable than with the managed host.

• Native uses the same native code as the pipe server, but the process
runs synchronously and terminates immediately after an assembly has
been processed. For this reason, it does not have the same build-time
performance as the pipe server, but it has exactly the same assembly
loading algorithm and is useful for diagnostics.

• Managed is a purely managed application. The assembly loading
algorithm may be less reliable in some situations because PostSharp
has less control over it. Note that this host is no longer being tested
and officially supported.

PostSharpBuild Build configuration of PostSharp. Valid values are Release, Diag and Debug. Only
the Release build is distributed in the normal PostSharp packages.

PostSharpHostConfigurationFile A semicolon-separated list of configuration files containing assembly binding
redirections that should be taken into account by the PostSharp hosting process,
such as app.config or web.config.

Diagnostic Properties
Property Name Description
PostSharpAttachDebugger If this property is set to True, PostSharp will break before starting execution,

allowing you to attach a debugger to the PostSharp process. The default value
is False. For details, see Debugging Build-Time Aspect Logic on page 355.

PostSharpTrace A semicolon-separated list of trace categories to be enabled. The property is
effective only when PostSharp runs in diagnostic mode (see property
PostSharpBuild here above). Additionally, the MSBuild verbosity should be set
to detailed at least. For details, see Debugging Build-Time Aspect
Logic on page 355.

PostSharpUpdateCheckDisabled True if the periodic update check mechanism should be disabled, False
otherwise.

PostSharpExpectedMessages A semicolon-separated list of codes of expected messages. PostSharp will
return a failure code if any expected message was not emitted. This property is
used in unit tests of aspects, to ensure that the application of an aspect results
in the expected error message.

PostSharpIgnoreError If this property is set to True, the PostSharp MSBuild task will succeed even if
PostSharp returns an error code, allowing the build process to continue. The
project or targets file can check the value of the ExitCode output property of
the PostSharp MSBuild task to take action.

Configuration

88

Property Name Description
PostSharpFailOnUnexpectedMessage This property should be used jointly with PostSharpExpectedMessages. If it set

to True, PostSharp will fail if any unexpected message was emitted, even if this
message was not an error. This property is used in unit tests of aspects, to
ensure that the application of an aspect did not result in other messages than
expected.

Other Properties
Property Name Description
PostSharpProject Location of the PostSharp project (*.psproj) to be executed by

PostSharp, or the string None to specify that PostSharp should
not be invoked. If this property is defined, the standard
detection mechanism based on references to the PostSharp.dll
is disabled.

PostSharpUseHardLink Use hard links instead of file copies when creating the snapshot
for Visual Studio Code Analysis (FxCop). This property is True by
default.

ExecuteCodeAnalysisOnPostSharpOutput When set to True, executes Microsoft Code Analysis on the
output of PostSharp. By default, the analysis is done on the
input of PostSharp, i.e. on the output of the compiler. This
property has no effect when Microsoft Code Analysis is disabled
for the current build.

PostSharpCopyCodeAnalysisDependenciesDisabled When set to True, PostSharp will not copy the all dependencies
of the current project output into the obj\Debug\Before-
PostSharp directory, which contains the copy of the assembly on
which Microsoft Code Analysis is executed by default. This
property has no effect when Microsoft Code Analysis is disabled
for the current build or when the
ExecuteCodeAnalysisOnPostSharpOutput property has been
set to True.

8.3. Working with PostSharp Configuration Files
PostSharp is designed as a modular post-compilation platform, whose functionality can be extended using plug-ins. For
instance, the Diagnostics Pattern Library is implemented as a plug-in. Although writing custom plug-ins is out of scope of
this documentation, you should be able, as a PostSharp user, to understand how plug-ins can be added to a project and
how they can be configured.
This topic contains the following sections:

• PostSharp configuration files on page 89
• Sharing configuration between projects on page 90
• Order of processing of configuration files on page 91

PostSharp configuration files
The configuration system of PostSharp is based on configuration files.

Working with PostSharp Configuration Files

89

By default, if you have a project named MyProject.csproj, PostSharp will try to load, from the same directory, a config-
uration file, named MyProject.psproj. Configuration file is optional. Most projects don't need it.

See Configuration File Schema Reference on page 91 for details about the format of this file.
For instance, the following code is the configuration file of a project using two plug-ins:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">

<PropertyName="LoggingBackend"Value="nlog"/>

<UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.dll"/>
<UsingFile="..\..\Build\bin\{$Configuration}\PostSharp.Patterns.Diagnostics.Weaver.NLog.dll"/>

<Multicast>
<LogAttributexmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"AttributeTargetTypes="PostSharp.Patterns.Diagnostics.Tests.NLog.Person"/>

</Multicast>

</Project>

The principal use cases for end-users are the following:
• Adding license keys. See the License on page 91 configuration element for details.
• Configuring properties. See the Property on page 91 configuration element for details.
• Including a plug-in. See the Using on page 91 configuration element for details.
• Adding aspects or constraints without modifying source code. See Adding Aspects Using XML on page 202 for

details.
• Editing logging profiles. See Configuration File Schema Reference on page 91 and Walkthrough: Customizing

Logging on page 171 for details.

Sharing configuration between projects
You will often want to share some configuration settings between several projects. A typical example is to add the
license key to all projects of your source code repository.
This can be achieved by adding a well-known configuration file to your source tree, or thanks to the Using on page 91
configuration element.

Well-known configuration files
PostSharp will automatically load a few well-known configuration files if they are present on the file system, in the
following order:

1. Any file named postsharp.config located in the directory containing the MSBuild project file (csproj or vbproj,
typically), or in any parent directory, up to the root. These files are loaded in ascending order, i.e. up from the
root directory to the project directory.

2. Any file named MySolution.pssln located in the same directory as the solution file MySolution.sln .

3. Any file named MyProject.psproj located in the same directory as the project file MyProject.csproj or My-
Project.vbproj .

For instance, the files may be loaded in the following order:
1. c:\src\BlueGray\postsharp.config

2. c:\src\BlueGray\FrontEnd\postsharp.config

3. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\postsharp.config

Configuration

90

4. c:\src\BlueGray\Solutions\BlueGray.pssln assuming that the current solution file is c:\src\BlueGray\
Solutions\BlueGray.sln.

5. c:\src\BlueGray\FrontEnd\BlueGray.FrontEnd.Web\BlueGray.FrontEnd.Web.psproj assuming that the
current project file is c:\src\BlueGray\Solutions\BlueGray.sln.

Explicit configuration sharing
The second technique to share a configuration file among several projects is to use the Using on page 91 configuration
element to import a configuration file into another configuration file.

Order of processing of configuration files
Elements of configuration files are processed in the following order:

1. License on page 91 elements are loaded.
2. Property on page 91 elements are loaded. Properties are evaluated at this moment, unless they are marked for

deferred evaluation.
3. SearchPath on page 91 elements are loaded.
4. Using on page 91 elements are loaded and referenced plug-ins and configuration files are immediately

loaded.
5. SectionType on page 91 elements are loaded.
6. Service on page 91 elements are loaded, but they are not yet instantiated.
7. Extension elements are loaded, but they are not evaluated at this moment.
8. Finally, services and other tasks are instantiated and the project is executed.

8.3.1. Configuration File Schema Reference
The basic format of a PostSharp configuration file is as follows:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:x="http://schemas.postsharp.org/1.0/configuration">

<!-- The following elements must appear in the proper order. -->

<LicenseValue="[<license-key>|<url>](;[<license-key>|<url>])*"/>

<PropertyName="<string>"Value="<expression:string>"Overwrite="[true|false]"Sealed="[true|false]"Deferred="[true|false]"Condition="<expression:bool>"/>

<SearchPathDirectory="<expression:string>(;<expression:string>)*"ReferenceDirectory="<expression:string>"Condition="<expression:bool>"/>
<SearchPathFile="<expression:string>(;<expression:string>)*"ReferenceDirectory="<expression:string>"Condition="<expression:bool>"/>

<UsingFile="<expression:string>"ProjectName="<expression:string>"Condition="<expression:bool>"/>

<SectionTypeLocalName="<string>"Namespace="<string>"/>

<ServiceTypeName="<string>"AssemblyFile="<string>"Condition="<expression:bool>"/>

<!-- The rest of the file contains extension elements defined using <SectionType /> elements.
PostSharp itself defines the following extension elements: -->

<Multicast>
<MyMulticastAspectMyAttributeName="<value>"xmlns="clr-namespace:<namespace>;assembly:<assembly>"x:Condition="<expression:bool>"/>

</Multicast>

<LoggingProfilesxmlns="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"x:Condition="<expression:bool>">
<LoggingProfileName="<string>"OnEntryLevel="<LogLevel>"OnSuccessLevel="<LogLevel>"OnExceptionLevel="<LogLevel>"OnEntryOptions="<LogOptions>"OnSuccessOptions="<LogOptions>"OnSuccessOptions="<LogOptions>"/>

</LoggingProfiles>

Working with PostSharp Configuration Files

91

</Project>

Schema elements
The configuration file includes these elements, described in detail in subsequent sections in this topic:
Project on page 92
License on page 92
SearchPath on page 92
Using on page 92
SectionType on page 93
Property on page 93
Service on page 93
Multicast on page 0

Project
This element is the root of the configuration file.

License
This element allows to load one or more license keys.

Attribute Type Description
Value string Required. A semicolon-separated list of license keys, or an URL to the license server.

SearchPath
This element adds a file or a directory to the list of paths in which PostSharp searches for assemblies and plug-ins.

Attribute Type Description
File string

expression
Optional (either File or Directory is required). A semicolon-separated list of files
that must be added to the path.

Directory string
expression

Optional (either File or Directory is required). A semicolon-separated list of
directories that must be added to the path.

ReferenceDirectory string
expression

Optional. The directory from which relative paths in File or Directory are resolved.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Using
This element imports another configuration file into the current project.

Attribute Type Description
File string

expression
Required. Name of the file to be imported. Unless the name is qualified by a relative or
absolute path, the file will be searched for using the search path. In this case, a file with
extension psplugin or dll will be searched.

ProjectName string Optional. In case that a single dll includes several configurations, specifies which configu-
ration should be loaded.

Configuration

92

Attribute Type Description
Condition boolean

expression
Optional. true if the element is considered, false if it must be ignored.

SectionType
This element defines custom sections for the current project. Custom sections can appear under the Project element
under all system-defined elements.

Attribute Type Description
LocalName string Required. The local name of the XML element representing the custom section.
Namespace string Required. The namespace of the XML element representing the custom section.

Property
This element defines a property for the current project.

Attribute Type Description
Name string Required. The property name.
Value string

expression
Required. The value that is assigned to the property.

Overwrite boolean Optional. true if the element will overwrite any previously-defined property of the same name,
otherwise false. The default value is true.

Sealed boolean Optional. true if an attempt to overwrite this property should result in an error, otherwise false.
The default value is false.

Deferred boolean Optional. true if the expression in the Value attribute should be dynamically evaluated every
time the property value is requested, or false if the expression should be set at the time the
property is defined. The default value is false.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Service
This element registers a service to the service locator for the current project.

Attribute Type Description
TypeName string Required. The full type name implementing the service. This class must have a public

parameterless constructor and implement the IService interface.

AssemblyFile string
expression

Optional. The path of the assembly defining the service class. If the attribute is not provided,
the type will be searched for in the assembly being currently processed by PostSharp.

Condition boolean
expression

Optional. true if the element is considered, false if it must be ignored.

Multicast
This element can be used to add aspects, policies or constraints to a project without adding the the C# project as
custom attributes. Adding elements to this section is equivalent to adding them to source code at assembly level.
The Multicast section is convenient to add aspect to several projects from a single file.

Working with PostSharp Configuration Files

93

For details regarding this section, see Including CLR Objects in Configuration on page 94.

8.3.2. Well-Known PostSharp Properties
The following table lists the PostSharp properties that may be set from the MSBuild project. The second column specifies
the name of the MSBuild property that influences the value of the PostSharp property, if any.

Property Name MSBuild Property Name Description
Configuration Configuration Build configuration (typically Debug or Release).

Platform Platform Target processor architecture (typically AnyCPU, x86 or x64).

MSBuildProjectFullPath MSBuildProjectFullPath Full path of the C# or VB project being built.

IgnoredAssemblies Comma-separated list of assembly short names (without
extension) that should be ignored by the dependency
scanning algorithm. Add an assembly to this list if it is
obfuscated, or contains native code, and causes PostSharp
to fail.

ReferenceDirectory MSBuildProjectDirectory Directory with respect to which relative paths are resolved.

SearchPath PostSharpSearchPath Comma-separated list of directories containing reference
assemblies and plug-ins.

TargetFrameworkIdentifier TargetFrameworkIdentifier Identifier of the target framework of the current project (i.e.
the framework on which the application will run). For
instance .NETFramework or Silverlight.

TargetFrameworkVersion TargetFrameworkVersion Version of the target framework of the current project (i.e.
the framework on which the application will run). For
instance v4.0.

TargetFrameworkProfile TargetFrameworkProfile Profile of the target framework of the current project (i.e.
the framework on which the application will run). For
instance WindowsPhone.

Other properties are recognized but are of little interest for end-users. For a complete list of properties, see PostSharp.
targets.

Using custom properties
By defining your own PostSharp properties, you can pass information from the build environment to aspects, or to any
code running in PostSharp. Custom PostSharp properties behave exactly as other PostSharp properties, so they can be
defined and read using the same procedures.

8.3.3. Including CLR Objects in Configuration
PostSharp includes a basic facility to describe CLR objects using XML. This facility is used to implement the
Multicast on page 91 and LoggingProfiles on page 91 sections of the configuration file, and can be used to define custom
sections.
The facility is consciously limited in features. It was only design to provide the same features as custom attributes in
programming languages.

Configuration

94

This topic contains the following sections:
• Basic rules on page 95
• Formatting of attributes on page 95
• Specific rules for the Multicast section on page 95

Basic rules
The basic rules apply to XML serialized objects:

• The local name of the XML element must exactly match the type name of the CLR type. An exception to this
rule is that the Attribute prefix can be omitted.

• The XML namespace of the element must be in the form clr-namespace:namespace;assembly:assembly
where namespace is the namespace of the CLR type and assembly is the name of the assembly declaring the
type.

• The type must have a public parameterless constructor.
• Names of XML attributes must exactly match the name of a public field or property of the CLR type.

Formatting of attributes
Values of XML attributes, mapping to CLR fields and properties, must be formatted according to the rule relevant for
each type:

Type Formatting
Intrinsics. An intrinsic is any of the following types: bool, char, sbyte, byte, short, ushort, int, uint, long, ulong,

float, double or string. Conversion is done using the Convert class.

Arrays A semicolon-separated list of elements.
Enumerations A list of enumeration member names separated by characters | or +. Names in the list are combined

using the + operator.
Types An assembly-qualified type name.
Object Fields and properties of type Object are not supported.

Specific rules for the Multicast section
The following additional rules apply to the Multicast on page 91 section of the configuration file:

• The class must derive from MulticastAttribute.

• The AttributePriority property may not be defined. This attribute is added automatically according to the
order of the XML element in the section.

8.3.4. Using Expressions in Configuration Files
Many attributes of the configuration schema accept expressions, which are dynamically evaluated. Expressions in the Post-
Sharp configuration system work similarly as in XSLT. Substrings enclosed by curled brackets, for instance {$property}, are
interpreted as XPath expressions.
For instance, the following code contains two XPath expressions:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
<PropertyName="LoggingEnabled"Value="{has-plugin('PostSharp.Patterns.Diagnostics')}"Deferred="true"/>
<Multicast>

Working with PostSharp Configuration Files

95

<WhenCondition="{$LoggingEnabled}">
<d:Log/>

</When>
</Multicast>

</Project>

Please check the MSDN documentation15 for general information about XPath.

NOTE
In the context of PostSharp configuration files, XPath expressions cannot refer to XML elements or attributes, but only to
variables, functions, operators and constants.

Accessing properties
PostSharp properties are mapped to XPath variables.
For instance, the expression {$LoggingEnabled} evaluates o the value of the LoggingEnabled property.

Using operators and functions
You can use any XPath function and operators.
Additionally to standard XPath 1.0 functions16, PostSharp defines the following functions:

Function Description
has-plugin(name) Evaluates to true if the given plug-in is loaded, otherwise false.

environment(variable) Returns the value of an environment variable.

Mixing expressions and literal strings
An attribute value can contain both text and expressions. This is illustrated in the following example:

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">
<PropertyName="A"Value="A"/> <!-- Evaluates to A -->
<PropertyName="B"Value="B;{$A}"/> <!-- Evaluates to B;A -->
<PropertyName="C"Value="C;{$B};{$A}"/> <!-- Evaluates to C;B;A;A -->

</Project>

8.4. Accessing Configuration from Source Code
Even if most configuration settings are consumed by PostSharp or its add-in, it is sometimes useful to access configuration
elements from user code. The PostSharp.dll library gives access to both configuration properties and extension configu-
ration elements.
This topic contains the following sections:

• Accessing properties on page 97
• Accessing custom sections on page 97

15. http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
16. http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Configuration

96

http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx
http://msdn.microsoft.com/en-us/library/ms256138(v=vs.110).aspx

Accessing properties
You can read the value of any PostSharp property by including it in an XPath expression and evaluating it using the
EvaluateExpression(String) method of PostSharpEnvironmentCurrentProject:

string value = PostSharpEnvironment.CurrentProject.EvaluateExpression("{$PropertyName}")

For details regarding expressions, see Using Expressions in Configuration Files on page 95.

Accessing custom sections
You can get a list of custom sections of a given name and namespace by calling the GetExtensionElements(String,
String) method of PostSharpEnvironmentCurrentProject:

IEnumerable<ProjectExtensionElement> elements =
PostSharpEnvironment.CurrentProject.GetExtensionElements("MyElement", "uri:MyNamespace");

Extension elements must be declared using the SectionType on page 89 element.

8.5. Working with Errors, Warnings, and Messages
As any compiler, PostSharp can emit messages, warnings, and errors, commonly referred to asmessage. Custom code
running at build time (typically the implementation of CompileTimeValidate or of a custom constraint) can use PostSharp
messaging facility to emit their own messages.
In this section:

• Ignoring and Escalating Warnings on page 97
• Emitting Errors, Warnings, and Messages on page 98.

TIP
PostSharp 2.1 contains an experimental feature that adds file and line information to errors and warnings. The feature
requires Visual Studio. In must be enabled manually in the PostSharp tab of Visual Studio options.

8.5.1. Ignoring and Escalating Warnings
As with conventional compilers, warnings emitted by PostSharp, as well as those emitted by custom code running at build
time in PostSharp, can be ignored (in that case they will not be displayed) or escalated into errors.
Warnings can be ignored either globally, using a project-wide setting, or locally for a given element of code. Warnings can
be escalated only globally.

Ignoring or escalating warnings globally
There are several ways to ignore or escalate a warning for a complete project:

• In Visual Studio, in the PostSharp tab of the project properties dialog. See Configuration on page 83 for
details.

• By defining the PostSharpDisabledMessages or PostSharpEscalatedMessages MSBuild properties. See
Configuration on page 83 and Configuring Projects Using MSBuild on page 85 for details.

Working with Errors, Warnings, and Messages

97

NOTE
The value * can be used to escalate all warnings into errors.

Ignoring warnings locally
Most warnings are related to a specific element of code. To disable a specific warning for a specific element of code,
add the IgnoreWarningAttribute custom attribute to that element of code, or to any enclosing element of code (for
instance, adding the attribute to a type will make it effective for all members of this type).
You can create your own custom attribute derived from IgnoreWarningAttribute and make it conditional to a
compilation symbol by using the ConditionalAttribute custom attribute.

8.5.2. Emitting Errors, Warnings, and Messages
Custom code running in PostSharp at build time can use the messaging facility to emit its own messages, warnings, and
errors. These messages will appear in the MSBuild output and/or in Visual Studio. User-emitted warnings can be ignored or
escalated using the same mechanism as for system messages.

Emitting messages
If you just have a few messages to emit, you may simply use one of the overloads of the Write method of the Message
class.
All messages must have a severity SeverityType, a message number (used as a reference when ignoring or escalating
messages), and a message text. Additionally, and preferably, messages may have a location (MessageLocation).

NOTE
To benefit from the possibility to ignore messages locally, you should always use provide a relevant location with your
messages. Previous API overloads, which did not require a message location, are considered obsolete.

TIP
Do not use string.Format to format your messages. Instead, pass message arguments to the messaging facility,
which will format some argument types, for instance reflection objects, in a more readable way.

Emitting messages using a message source
If you want the text of all messages to be stored in a single location, you have to emit messages through a Message-
Source. Typically, you would create a singleton instance of MessageSource for each component, and associate each
instance with a message dispenser. A message dispenser is a custom-written class implementing the IMessage-
Dispenser interface. The MessageDispenser provides a convenient abstract implementation.

NOTE
Although it is tempting to use a ResourceManager as the back-end of a message dispenser, comes with a non-
negligible performance penalty because of the cost of instantiating the ResourceManager.

Configuration

98

8.6. Resolution of assembly binding redirections
PostSharp executes your project assemblies at compile time. This is why PostSharp must follow assembly binding
redirections at compile time. Although the default assembly redirection mechanism works fine in most cases, there may be
situations where you will need to override it.

NOTE
To learn why PostSharp executes your project assemblies at compile time, see Understanding Aspect Lifetime and
Scope on page 304.

Default assembly binding redirections
In order to follow the same assembly binding redirections as you application does at runtime, PostSharp analyzes your
projects and configuration files (typically app.config or web.config) and generates assembly binding redirection configu-
ration. PostSharp stores the assembly binding redirection in a file named PostSharpHost.config and stored in the obj
folder. You can review the PostSharpHost.config file to get an idea of what configuration PostSharp uses to resolve
assemblies. For an empty ASP.NET MVC 5 application the PostSharpHost.config may look like this

<?xmlversion="1.0"encoding="utf-8"?>
<configuration>

<runtime>
<assemblyBindingxmlns="urn:schemas-microsoft-com:asm.v1">

<dependentAssembly>
<assemblyIdentityname="Microsoft.Owin.Security"publicKeyToken="31bf3856ad364e35"/>
<bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/>

</dependentAssembly>
<dependentAssembly>

<assemblyIdentityname="Microsoft.Owin.Security.OAuth"publicKeyToken="31bf3856ad364e35"/>
<bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/>

</dependentAssembly>
<dependentAssembly>

<assemblyIdentityname="Microsoft.Owin.Security.Cookies"publicKeyToken="31bf3856ad364e35"/>
<bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/>

</dependentAssembly>
<dependentAssembly>

<assemblyIdentityname="Microsoft.Owin"publicKeyToken="31bf3856ad364e35"/>
<bindingRedirectoldVersion="0.0.0.0-3.0.1.0"newVersion="3.0.1.0"/>

</dependentAssembly>
</assemblyBinding>

</runtime>
</configuration>

NOTE
We didn't reinvent the wheel. Under the hood, PostSharp relies on the GenerateBindingRedirects17 MSBuild task.

Overriding default assembly redirections
In case the default mechanism does not work, you can disable it by setting the MSBuild property PostSharpDisable-
DefaultBindingRedirects to True in your project file:

<PropertyGroup>
<PostSharpDisableDefaultBindingRedirects>True</PostSharpDisableDefaultBindingRedirects>

</PropertyGroup>

17. https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx

Resolution of assembly binding redirections

99

https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx
https://msdn.microsoft.com/en-us/library/microsoft.build.tasks.generatebindingredirects.aspx

With this configuration PostSharp doesn’t analyze assembly binding redirections.

CAUTION NOTE
Do not set PostSharpDisableDefaultBindingRedirects to True unless you really have to. It may produce difficult to
predict results.

NOTE
The default algorithm is always disabled for Windows Phone Silverlight projects because it does not work.

If you disable default binding redirections, you may want to specify a file with your own assembly binding redirection
configuration

<PropertyGroup>
<PostSharpDisableDefaultBindingRedirects>True</PostSharpDisableDefaultBindingRedirects>
<PostSharpHostConfigurationFile>web.config</PostSharpHostConfigurationFile>

</PropertyGroup>

With this configuration PostSharp uses explicit assembly binding redirection configuration from web.config file.

8.7. Reducing Build Time
Although we're working hard at PostSharp to provide fast builds by default, there are a few actions you can take to further
improve the performance of your build.

Chapter Description
Enabling Solution-Wide Build on page 100 This section describes how to decrease build time by enabling whole-

solution build.
Using IncrediBuild and PostSharp
Together on page 102

This section describes how to distribute the build to several machines
using IncrediBuild.

8.7.1. Enabling Solution-Wide Build
By default, PostSharp processes each project in its own AppDomain. The overhead of creating a new AppDomain for each
project is quite large: not the new AppDomain has to be loaded, but all assembly references need to be loaded and indexed
over and over again.
This overhead can be dramatically reduced by enabling solution-wide build. When this option is enabled, PostSharp will
reuse the AppDomains as much as possible. By enabling solution-wide build, you can make PostSharp 1.5 to 2 times faster.
This topic contains the following sections:

• Differences of solution-wide build on page 101
• Enabling solution-wide build on page 101

Configuration

100

Differences of solution-wide build
Before you enable solution-wide build, you should check that your custom aspects do not depend on charasteristics
that differ between the default (project-wide) build and the solution-wide build. These differences are the following:

• Static variables are shared between several projects instead of being local to a single project. Make sure that
the build-time logic of your aspect does not store information in static fields. Replace static fields with
accesses to PostSharpEnvironment.CurrentProject.StateStore, which provides a project-scoped state
store. See IProjectStateStore and IStateStore for details.

• When you reflect dependent assemblies using System.Reflection, you may randomly get the pre-PostSharp or
post-PostSharp binary assembly. Do not rely on the fact that you get any of these variants of the assembly.

• Assembly binding redirections are computed for the whole solution (or sub-solution) instead of the sole
project. For a specific project, it can happen that you will get a higher version of a reference assembly in
solution-wide build than in project-wide build.

CAUTION NOTE
The set of projects processed in the same AppDomain and the order of processing should be considered random.

Enabling solution-wide build

CAUTION NOTE
Solution-wide build is an experimental feature. If it does not work for you, please report the issue to PostSharp support
and disable the feature.

To enable solution-wide build for a solution:
1. In Solution Explorer, right-click on the solution node, and select Properties.
2. Select the PostSharp tab under Common Properties.

Reducing Build Time

101

3. Check the checkbox Enable solution-wide build optimizations.

The PostSharp property page in the Visual Studio solution properties dialog.

As a result, PostSharp will attempt to reuse AppDomains when building this solution from Visual Studio. The setting is
stored in a file named MySolution.pssln in the same directory as MySolution.sln.

NOTE
Solution-wide build only works when the build is triggered by Visual Studio. Command-line builds are not affected.

TIP
PostSharp needs to create at least one AppDomain per specific version of the target framework. To optimize the App-
Domain reuse and therefore build time, make sure to consolidate the target framework versions of your projects.

8.7.2. Using IncrediBuild and PostSharp Together
Despite all the efforts we put into PostSharp optimizations, building a solution with PostSharp will always take more time
than without it. If your build time was already borderline without PostSharp, you may find that it becomes inacceptably slow
with PostSharp.
If you are working on large solutions containing a lot of projects that can be built in parallel, you may consider to use
IncrediBuild18.

NOTE
IncrediBuild is a product of Xoreax. PostSharp Technologies is not affiliated to Xoreax.

18. https://www.incredibuild.com/

Configuration

102

https://www.incredibuild.com/
https://www.incredibuild.com/

This topic contains the following sections:
• What is IncrediBuild? on page 103
• Who benefits from IncrediBuild? on page 103
• Building a solution with IncrediBuild on page 103

What is IncrediBuild?
IncrediBuild speeds large C# build time for Visual Studio – up to 10x times faster – by transforming every developer’s
workstation or build server into a super computer consisting of as many idle CPUs you currently have in your entire
network. Instead of working on your 4 or 8 core machine IncrediBuild transforms your workstation into a virtual 200
cores machine. IncrediBuild is already trusted by over 100,000 users at more than 2,000 leading companies.
We at PostSharp have been working with IncrediBuild to make our products compatible. That means that you can now
win twice:

• Lower development time thanks to PostSharp.
• Lower waiting time thanks to IncrediBuild.

Who benefits from IncrediBuild?
You will find IncrediBuild useful for you if you’re in the following situation:

• Your total build time is over 2 minutes.
• Your solution is composed of dozens of projects with loosely coupled dependencies, so that a high level of

parallelism can be reached.

Building a solution with IncrediBuild
To build a PostSharp-enabled solution with IncrediBuild:

1. Download and install IncrediBuild19 .
2. Create a file (name it for instance IncrediBuild.xml) in your source folder with the following content:

<?xmlversion="1.0"encoding="UTF-8"standalone="no"?>
<ProfileFormatVersion="1">

<Tools>
<ToolFilename="postsharp-net40-x86-native"AllowRemoteIf="/AllowRemote"DeriveCaptionFrom="firstparam"SkipIfExistsOutputFileMasks="*.psmap"/>
<ToolFilename="postsharp-net40-x64-native"AllowRemoteIf="/AllowRemote"DeriveCaptionFrom="firstparam"SkipIfExistsOutputFileMasks="*.psmap"/>

</Tools>
</Profile>

3. Build your solution using the following command line:
BuildConsole.exe MySolution.sln /Rebuild /Profile=C:\Path\To\IncrediBuild.xml

Make sure the path to the XML file is correct, otherwise the flag will be silently ignored.

19. https://www.incredibuild.com/

Reducing Build Time

103

https://www.incredibuild.com/
https://www.incredibuild.com/

PART 3

Standard Patterns

CHAPTER 9

INotifyPropertyChanged

Binding objects to the UI is a large and tedious task. You must implement INotifyPropertyChanged on every property that
needs to be bound. You need to ensure that the underlying property setter correctly raises events so that the View knows
that changes have occurred. The larger your codebase, the more work there is. You can partially eliminate all of this
repetitive code by pushing some of the functionality to a base class that each Model class inherits from. It still doesn't
eliminate all of the repetition though.
PostSharp can completely eliminate all of that repetition for you. All you have to do is make use of the Model Pattern
Library's NotifyPropertyChangedAttribute aspect.

In this chapter
Topic Description
Walkthrough: Automatically Implementing INotifyProper-
tyChanged on page 108

This section shows how to automatically implement the
INotifyPropertyChanged interface in a class thanks to the
NotifyPropertyChangedAttribute aspect.

Walkthrough: Working with Properties that Depend on
Other Objects on page 111

This section describes how to handle dependencies that
cross several objects, as when a view-model object is
dependent on properties of a model object.

Implementing INotifyPropertyChanging on page 113 This section documents how to implement the
INotifyPropertyChanging interface for components
which need to be signalled before a property value is
changed.

Integrating with UI Frameworks on page 117 This section shows examples of using the
NotifyPropertyChangedAttribute aspect with some of
the popular UI frameworks.

Handling Corner Cases on page 114 This section documents how to cope with the cases that
cannot be automatically handled by the
NotifyPropertyChangedAttribute aspect.

Understanding the NotifyPropertyChanged
Aspect on page 120

This section describes the principles and concepts on
which the NotifyPropertyChangedAttribute aspect
relies.

Suppressing False Positives on page 124 This section shows how to prevent notifications when the
property value does not actually change.

Reducing Build Time

107

9.1. Walkthrough: Automatically Implementing
INotifyPropertyChanged
This section shows how to make your class automatically implements the INotifyPropertyChanged interface Notify-
PropertyChangedAttribute aspect.

Let's start with a simple class that has two simple properties and one composite property:

public class CustomerForEditing
{

public string FirstName { get; set; }
public string LastName { get; set; }

public string FullName
{

get { return string.Format("{0} {1}", this.FirstName, this.LastName);}
}

}

This topic contains the following sections:
• Adding the NotifyPropertyChanged aspect with PostSharp Tools for Visual Studio on page 108
• Adding the NotifyPropertyChanged aspect manually on page 111
• Consuming the INotifyPropertyChanged interface on page 111
• See Also on page 0

Adding the NotifyPropertyChanged aspect with PostSharp Tools for Visual Studio
To add INotifyPropertyChanged aspect with PostSharp Tools for Visual Studio:

1. Put the caret on the class name and expand the Smart Tag. From the list select "Implement INotifyProperty-
Changed".

INotifyPropertyChanged

108

2. If you haven't previously added the Model Pattern Library to the current project, PostSharp will inform you
that it will be doing this as well as adding an attribute to the target class.

3. PostSharp will download the Model Pattern Library and add the attribute.

Walkthrough: Automatically Implementing INotifyPropertyChanged

109

4. Once the download, installation and configuration of the Model Pattern Library and the addition of the
attribute has finished you can close the wizard and look at the changes that were made to your codebase.

5. You'll notice that the code you added NotifyPropertyChangedAttribute to has only been slightly modified.
PostSharp has added a NotifyPropertyChangedAttribute attribute to the class. This class level attribute will
add the implementation of NotifyPropertyChangedAttribute to the class as well as the plumbing code in
each property that makes it work.

[NotifyPropertyChanged]
public class CustomerForEditing
{

public string FirstName { get; set; }
public string LastName { get; set; }

public string FullName
{

get { return string.Format("{0} {1}", this.FirstName, this.LastName); }
}

}

NOTE
This example has added NotifyPropertyChangedAttribute to one class. If you need to implement Notify-
PropertyChangedAttribute to many different classes in your codebase you will want to read about using
aspect multicasting. See the section Adding Aspects to Multiple Declarations on page 187.

By using the Model Pattern Library to add NotifyPropertyChangedAttribute to your Model classes you are able to
eliminate all of the repetitive boilerplate coding tasks and code from the codebase.

INotifyPropertyChanged

110

Adding the NotifyPropertyChanged aspect manually
The wizard does nothing more than installing a NuGet package and adding a custom attribute. You can achieve the
same manually.

To add INotifyPropertyChanged aspect manually:
1. Use NuGet Package Manager to add the PostSharp.Patterns.Model package to your project.
2. Import the PostSharp.Patterns.Model namespace into your file.

3. Add the [NotifyPropertyChanged] custom attribute to the class.

Consuming the INotifyPropertyChanged interface
Since the INotifyPropertyChanged interface is implemented by PostSharp at build time after the compiler has
completed, the interface will neither be visible to Intellisense or other tools like Resharper, neither to the compiler. The
same is true for the PropertyChanged event.

In many cases, this limitation does not matter because the interface is consumed from a framework (like WPF) that is not
coupled with your project. However, in some situations, you may need to access the INotifyPropertyChanged interface.

There are two ways to access the INotifyPropertyChanged interface from your code:

• You can cast your object to INotifyPropertyChanged, for instance:

((INotifyPropertyChanged) obj).PropertyChanged += obj_OnPropertyChanged;

If your tooling complains that the object does not implement the interface, you can first cast to object:

((INotifyPropertyChanged) (object) obj).PropertyChanged += obj_OnPropertyChanged;

• You can use the PostCastSourceType, TargetType(SourceType) method. The benefit of using this method is
that the cast operation is validated by PostSharp, to the build will fail if you try to cast an object that does not
implement the INotifyPropertyChanged interface. For instance:

Post.Cast<Foo,INotifyPropertyChanged>(obj).PropertyChanged += obj_OnPropertyChanged;

9.2. Walkthrough: Working with Properties that Depend on
Other Objects
It’s very common for the properties of one class to be dependent on the properties of another class. For example, a view-
model layer will often contain a reference to a model object, and public properties which are in turn forwarded to the
underlying properties of this referenced object. In this scenario the view-model component’s properties have a dependency
on the referenced model’s properties. Subsequently the referenced model may also have properties which depend on the
properties of other objects.
PostSharp’s Model Pattern Library easily handles transitive dependencies. Simply add the NotifyPropertyChanged-
Attribute class attribute to each class in the dependency chain. This will ensure that property change notifications are
propagated up and down the dependency chain. The Model Pattern Library takes care of the rest and will even handle
circular dependencies.
In the following set of steps, the CustomerModel class is used as a dependency of a CustomerViewModel class containing
FirstName and LastName properties both of which directly map to properties of the CustomerModel class, and a public read

Walkthrough: Working with Properties that Depend on Other Objects

111

only property called FullName, which is calculated based on the value of the underlying customer’s FirstName and Last-
Name properties.

1. Add the CustomerModel class to your project ensuring that the NotifyPropertyChangedAttribute attribute is
included:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

}

2. Setup a view-model class which contains a reference to a CustomerModel object, add properties to get/set the
name related fields. References to properties of the CustomersForEditing object should be in the form of this.
field.Property (or this.Property.Property), otherwise PostSharp won’t be able to discover the dependencies
from your source code.

class CustomerViewModel
{

CustomerModel model;

public CustomerViewModel(CustomerModel m)
{

this.model = m;
}

public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}

public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

}

3. Add the FullName property and use the same rule as described in the previous step to reference dependent
properties:

class CustomerViewModel
{

CustomerModel model;

public CustomerViewModel(CustomerModel m)
{

this.model = m;
}
public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

public string FullName { get {
return string.Format("{0} {1}", this.model.FirstName, this.model.LastName);

} }

}

INotifyPropertyChanged

112

4. Add the NotifyPropertyChangedAttribute attribute to the class:

[NotifyPropertyChanged]
class CustomerViewModel
{

CustomerModel model;

public CustomerViewModel(CustomerModel m)
{

this.model = m;
}

public string FirstName { get { return this.model.FirstName; } set { this.model.FirstName = value;}}
public string LastName { get { return this.model.LastName; } set { this.model.LastName = value; }}

public string FullName { get {
return string.Format("{0} {1}", this.model.FirstName, this.model.LastName);

} }

}

You now have a view-model class which can be used to bridge a view (e.g. an application’s user interface) with the
underlying data, and calls to get/set will be propagated across the chain of dependencies.

NOTE
Read the article Handling Corner Cases on page 114 to learn about referencing properties without using the this.field.
Property form.

9.3. Implementing INotifyPropertyChanging
By convention, the PropertyChanged event must be raised after the property value has changed. However, some
components need to be signalled before the property value will be changed. This is the role of the INotifyProperty-
Changing interface.

Because the INotifyPropertyChanging interface is not portable (in Xamarin, it is even a part of a different namespace),
PostSharp cannot introduce it. However, if you implement the INotifyPropertyChanging interface yourself in your code,
PostSharp will signal the PropertyChanging event. To make that work, you need to create a OnPropertyChanging method
with the right signature.

To add the INotifyPropertyChanging interface to a class:
1. Make your class implement INotifyPropertyChanging and add the PropertyChanging event:

public class Foo : INotityPropertyChanging
{

public event PropertyChangingEventHandler PropertyChanging;
}

Implementing INotifyPropertyChanging

113

2. Add the OnPropertyChanging method:

public class Foo : INotityPropertyChanging
{

public event PropertyChangingEventHandler PropertyChanging;

protected void OnPropertyChanging(string propertyName)
{

if (this.PropertyChanging != null)
{

this.PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
}

}
}

3. Add the NotifyPropertyChangedAttribute aspect to your class as described in INotifyProperty-
Changed on page 107.

[NotifyPropertyChanged]
public class Foo : INotityPropertyChanging
{

public event PropertyChangingEventHandler PropertyChanging;

protected void OnPropertyChanging(string propertyName)
{

if (this.PropertyChanging != null)
{

this.PropertyChanging(this, new PropertyChangingEventArgs (propertyName));
}

}
}

NOTE
The contract between your class and the NotifyPropertyChangedAttribute is only the OnPropertyChanging method. As
long as this method exists in the class, it will be invoked by the aspect before the value of a property changes.

9.4. Handling Corner Cases
Postsharp includes a number of attributes for customizing the Model Pattern’s behaviour and for handling special
dependencies.
This topic contains the following sections:

• Ignoring Changes to Properties on page 114
• Handling Virtual Calls, References, and Delegates in a Get Accessor on page 115
• Handling Local Variables on page 116
• Handling Dependencies on Pure Methods on page 116

Ignoring Changes to Properties
Use the IgnoreAutoChangeNotificationAttribute class attribute to prevent an OnPropertyChanged event from being
invoked when setting a property. For example, the CustomerModel class contains a Country property amongst others:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }

INotifyPropertyChanged

114

public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }
public string Country { get; set;}

}

To prevent a property notification from being invoked when the Country’s value is set, simply place the IgnoreAuto-
ChangeNotificationAttribute attribute above the property:

[NotifyPropertyChanged]
public class CustomerModel
{

public string FirstName { get; set; }
public string LastName { get; set; }
public string Phone { get; set; }
public string Mobile { get; set; }
public string Email { get; set; }

[IgnoreAutoChangeNotification]
public string Country { get; set;}

}

Handling Virtual Calls, References, and Delegates in a Get Accessor
If a get accessor calls a virtual method from its class or a delegate, or references a property of another object (without
using canonical form this.field.Property), PostSharp will generate an error because it cannot resolve such a
dependency at build time. To suppress this error, you can add the [SafeForDependencyAnalysisAttribute] custom
attribute to the property accessor (or in any method used by the property accessor). This custom attribute instructs
PostSharp that the property accessor is “safe” – in other words, it contains only dependencies in the canonical form
this.field.Property.

For example, say CustomerModel contains a virtual method called ValidateCountry() which is used by the get accessor
of its Country property:

[NotifyPropertyChanged]
public class CustomerModel
{

// Details skipped.

protected virtual bool ValidateCountry(string s)
{

if (s!=null)
return true;

else
return false;

}

public string Country
{

get
{

if(this.ValidateCountry(value))
return value;

else
return null;

}
set;

}
}

In this situation the property relies on a virtual method which PostSharp cannot resolve at build time, so the SafeFor-
DependencyAnalysisAttribute attribute can be placed on the Country property suppress this error:

Handling Corner Cases

115

[NotifyPropertyChanged]
public class CustomerModel
{

// Details skipped.

public virtual bool Test(string s)
{

if (s!=null)
return true;

else
return false;

}

[SafeForDependencyAnalysisAttribute]
public string Country
{

get
{

if(this.test(value) == true)
return value;

else
return null;

}
set;

}
}

NOTE
By using SafeForDependencyAnalysisAttribute, you are taking the responsibility that your code only has
dependencies that are given either in the canonical form of this.field.Property either explicitly using the On
construct (see the next section). If you are using this custom attribute but have non-canonical dependencies, some
property changes may not be detected in which case no notification will be generated.

Handling Local Variables
Properties may depend on a property of another object, and sometimes this object must be stored in a local variable.
Most of the times, PostSharp is able to analyze chains of dependencies in properties that are dependent on a property
of a local variable. However, when the variable is assigned in a loop or in an exception handler, the analysis cannot be
executed.
If PostSharp does not understand your code, you need to use the SafeForDependencyAnalysisAttribute attribute and
the DependsOn method as described above.

Handling Dependencies on Pure Methods
Often times an object will depend on a method which is solely dependent on its input parameters to produce an output
(e.g. a static method). Consider the following variation to CustomerModel where the ValidPhoneNumber property logic
has been moved into a static method called GetValidPhoneNumber() which exists in a separate helper class called
ContactHelper:

public class ContactHelper
{

[Pure]
public static string GetValidPhoneNumber(string firstPhoneNumber, string secondPhoneNumber)
{

if(firstPhoneNumber != null)
return firstPhoneNumber;

else if (secondPhoneNumber != null)
return secondPhoneNumber;

else
return null;

}
}

INotifyPropertyChanged

116

[NotifyPropertyChanged]
public class CustomerModel
{

public Contact PrimaryContact{get; set;}
public Contact SecondaryContact{get; set;}

public string ValidPhoneNumber
{

get {
return ContactHelper.GetValidPhoneNumber(this.PrimaryContact.Phone, this.SecondaryContact.Phone);

}
}

}

Since GetValidPhoneNumber() is a standalone method of another class, it is not analyzed. Therefore the PureAttribute
attribute needs to be applied to this method to acknowledge this dependency.

9.5. Integrating with UI Frameworks
There are frameworks that help you to create XAML applications including binding of objects in a simplified way. But
usually, you still need to include some repetitive code anyway.
PostSharp can eliminate most of that repetition for you. All you have to do is make use of the NotifyPropertyChanged-
Attribute aspect.

In this chapter, you can find examples of using the NotifyPropertyChangedAttribute aspect with some of the popular UI
frameworks.
This list of supported frameworks is not exhaustive. If the framework you are using is not listed here, it does not necesarily
mean that PostSharp will not work with the framework.

In this chapter
Topic Description
Caliburn.Micro on page 117 This section shows how to use the

NotifyPropertyChangedAttribute aspect with the
Caliburn.Micro framework.

MVVM Light on page 119 This section shows how to use the
NotifyPropertyChangedAttribute aspect with the
MVVM Light Toolkit.

9.5.1. Caliburn.Micro
Caliburn.Micro is a popular framework designed for building applications across all XAML platforms. Caliburn.Micro
includes several features, and one of those is to simplify the implementation of the INotifyPropertyChanged interface.
However, Caliburn.Micro still requires you to write a lot of boilerplate code. This article shows how to use PostSharp
together with Caliburn.Micro, whether because you are upgrading an existing project that already uses this framework or
because you want to use the other features of Caliburn.Micro.

Integrating with UI Frameworks

117

Without PostSharp
The example below shows a View-Model implemented according to the Caliburn.Micro specification. The class Shell-
ViewModel inherits from the class PropertyChangedBase, which implements the INotifyPropertyChanged interface and
thus is already helping you to use the Notify Property Changed pattern.
On the other hand, there is still part of the boilerplate usually appearing within the NotifyPropertyChanged pattern. For
each property, you must have an explicit field, and you must manually notify all dependencies and the property itself.
The result is not only more code written, but also a big space for bugs because you must discover and maintain the
chain of dependent properties yourself.

using Caliburn.Micro;
using System.Windows;

namespace CaliburnMicroWithPostSharp
{

public class ShellViewModel : PropertyChangedBase
{

string name;

public string Name
{

get { return this.name; }
set
{

this.name = value;
this.NotifyOfPropertyChange(() => this.Name);
this.NotifyOfPropertyChange(() => this.CanSayHello);

}
}

public bool CanSayHello => !string.IsNullOrWhiteSpace(this.Name);

public void SayHello()
{

MessageBox.Show($"Hello {this.Name}!");
}

}
}

With PostSharp
With PostSharp, you don’t need to do any of that. You just indicate which classes should have the NotifyProperty-
Changed pattern implemented using the NotifyPropertyChangedAttribute attribute and PostSharp does the hard
work for you. You can see the difference in the second example, where the previous code got refactored keeping the
same functionality.

using System.Windows;
using PostSharp.Patterns.Model;

namespace CaliburnMicroWithPostSharp
{

[NotifyPropertyChanged]
public class ShellViewModel : PropertyChangedBase
{

public string Name { get; set; }

public bool CanSayHello => !string.IsNullOrWhiteSpace(this.Name);

public void SayHello()
{

MessageBox.Show($"Hello {this.Name}!");
}

}
}

INotifyPropertyChanged

118

Note that it is no longer necessary to derive your class from the PropertyChangedBase class. Even if you suppress the
inheritance from PropertyChangedBase class, you can still use other Caliburn.Micro features in your code such as
commands. However if you do keep the inheritance from PropertyChangedBase, the NotifyPropertyChanged-
Attribute aspect will invoke the NotifyOfPropertyChange method of the PropertyChangedBase class, consistently
with the coding practices of Caliburn.Micro.

9.5.2. MVVM Light
MVVM Light is a framework that helps you build XAML applications according to the Model-View-View-Model architectural
pattern. MVVM Light includes several features, and one of those is to simplify the implementation of the INotifyProperty-
Changed interface. However, MVVM Light still requires you to write a lot of boilerplate code. This article shows how to use
PostSharp together with MVVM Light, whether because you are upgrading an existing project that already uses this
framework or because you want to use the other features of MVVM Light.

Without PostSharp
In the example below, there is a View-Model implemented according to the MVVM Light Toolkit specification. The class
MainViewModel inherits from the class ViewModelBase, which implements the INotifyPropertyChanged interface and
thus is already helping you to use the Notify Property Changed pattern.
On the other hand, there is still part of the boilerplate usually appearing within the NotifyPropertyChanged pattern. For
each property, you must have an explicit field, and you must manually notify all dependencies and the property itself.
The result is not only more code written, but also a big space for bugs because you must discover and maintain the
chain of dependent properties yourself.

using GalaSoft.MvvmLight;
using GalaSoft.MvvmLight.Command;
using System.Windows.Input;
using System.Windows;

namespace MvvmLightTest.ViewModel
{

public class MainViewModel : ViewModelBase
{

int _exampleValue;

public int ExampleValue
{

get
{

return _exampleValue;
}
set
{

if (_exampleValue == value)
return;

_exampleValue = value;
RaisePropertyChanged("ExampleValue");

}
}

}
}

With PostSharp
With PostSharp, you don’t need to do any of that. You just indicate which classes should have the NotifyProperty-
Changed pattern implemented using the NotifyPropertyChangedAttribute attribute and PostSharp does the hard
work for you. You can see the difference in the second example, where the previous code got refactored keeping the
same functionality.

Integrating with UI Frameworks

119

using GalaSoft.MvvmLight.Command;
using System.Windows.Input;
using System.Windows;
using PostSharp.Patterns.Model;

namespace MvvmLightTest.ViewModel
{

[NotifyPropertyChanged]
public class MainViewModel : ViewModelBase
{

public int ExampleValue { get; set; }
}

}

Note that it is no longer necessary to derive your class from the ViewModelBase class. Even if you suppress the
inheritance from ViewModelBase class, you can still use other MVVM Light features in your code such as commands.
However if you do keep the inheritance from ViewModelBase, the NotifyPropertyChangedAttribute aspect will invoke
the RaisePropertyChanged method of the ViewModelBase class, consistently with the coding practices of MVVM Light.

9.6. Understanding the NotifyPropertyChanged Aspect
This section describes the principles and algorithm on which the NotifyPropertyChangedAttribute aspect is based. It
helps developers and architects to understand the behavior and limitation of the aspect.
This topic contains the following sections:

• Implementation of the INotifyPropertyChanged interface on page 120
• Instrumentation of fields on page 120
• Analysis of field-property dependencies on page 121
• Limitations on page 122
• Raising notifications on page 123
• Remarks on page 124

Implementation of the INotifyPropertyChanged interface
The NotifyPropertyChangedAttribute aspect introduces the INotifyPropertyChanged interface to the target class
unless the target class already implements the interface. Additionally, the aspect also introduces the OnProperty-
Changed(String) method. The aspect always introduces this method as protected and virtual, so it can be overridden in
derived classes.
If the target class already implements the INotifyPropertyChanged interface, the aspect requires the class to expose
the OnPropertyChanged(String) method.

The aspect uses the OnPropertyChanged(String) to raise the PropertyChanged event. Thanks to this method, the
aspect is able to raise the event even when the INotifyPropertyChanged is not implemented by the aspect. This
mechanism also allows user code to raise notifications that are not automatically handled by the NotifyProperty-
ChangedAttribute aspect.

Instrumentation of fields
Although most implementations the INotifyPropertyChanged interface rely on instrumenting the property setter, this
strategy has severe limitations: it is unable to handle composite properties, which return a value based on several other
fields or properties. Composite properties have no setter, rendering this strategy unusable.

INotifyPropertyChanged

120

Instead, the NotifyPropertyChangedAttribute aspect instruments all write operations to fields (for instance a Full-
Name property appending FirstName and LastName). It analyzes dependencies between fields and properties and raises
a change notification for any property affected by a change in this specific field.
All methods, and not just property setters, can make a change to a field and therefore cause the PropertyChanged event
to be raised. Property setters do not have any specific status in the NotifyPropertyChangedAttribute implementation.

Analysis of field-property dependencies
In order to adequately raise the PropertyChanged event, the NotifyPropertyChangedAttribute aspect needs to know
which properties are affected by a change of a class field. The field-property dependency map is created at build time
by analyzing the source code: the analyzer reads the getter of all properties and check for field references. The map is
then serialized inside the assembly and used at runtime to raise relevant events when a field has changed.

Dependencies on fields of the current object
Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice
{

private decimal _amount;
private decimal _tax;

public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal Tax { get { return this._tax; } set { this._tax = value; } }

public void Set(decimal amount, decimal tax)
{

this._amount = amount;
this._tax = tax;

}

public decimal Total { get { return this._amount + this._tax; } }
}

The result of the analysis for the code snippet above would be the map { _amount => (Amount, Total), _tax => (
Tax, Total) }. Whenever the _amount field is changed, the PropertyChanged event will be raised for properties
Amount and Total.

Automatic properties are processed as hand-written properties; in this case, the implicit backing field is taken into
account for the dependency analysis.

Recursive analysis of the call graph
Field references are not only looked for in the getter, but in any method invoked from the getter, and recursively.
Consider the following code snippet:

[NotifyPropertyChanged]
class Invoice
{

private decimal _amount;
private decimal _exchangeRate;

public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal ExchangeRate { get { return this._exchangeRate; } set { this._exchangeRate = value; } }

private decimal Convert(decimal amount)
{

return amount * this.ExchangeRate;
}

public int AmountBase { get { return this.Convert(this.Amount); } }

}

Understanding the NotifyPropertyChanged Aspect

121

In the code snippet above, the analyzer starts from the getter of the AmountBase property, follows the call to the Amount
property getter, then call to the AmountBase method and recursively follows the ExchangeRate property getter.
Therefore, the resulting property map remains { _amount => (Amount, AmountBase), _exchangeRate => (
ExchangeRate, AmountBase) }.

Dependencies on properties of external objects
The NotifyPropertyChangedAttribute aspect does not just handle dependencies between a property and a field of
the same class. It also handles dependencies on properties of properties or properties of fields, and recursively. That is,
it supports expressions of the form _f.P1.P2.P3 where _f is a field or property and P1, P2 and P3 are properties.

Consider the following code snippet:

[NotifyPropertyChanged]
class InvoiceModel
{

private decimal _amount;
private decimal _tax;

public decimal Amount { get { return this._amount; } set { this._amount = value; } }
public decimal Tax { get { return this._tax; } set { this._tax = value; } }

}

[NotifyPropertyChanged]
class InvoiceViewModel
{

InvoiceModel _model;

public InvoiceModel Model { get { return this._model; } }

public decimal Total { get { return this._model.Amount + this.Model.Tax; } }

}

In the example above, the InvoiceViewModel.Total property is dependent on properties Amount and Tax of the _model
field. Therefore, changes in the InvoiceModel._amount field will trigger a change notification for the InvoiceModel.
Amount and InvoiceViewModel.Total properties.

The NotifyPropertyChangedAttribute aspect automatically subscribes to the PropertyChanged event of the child
object, and unsubscribes whenever the value of the field in the parent object (_model in our example) is modified.
However, the parent object does not unsubscribe upon disposal because the NotifyPropertyChangedAttribute makes
no assumption that the IDisposable interface has been implemented. Therefore, the implementation of the INotify-
PropertyChanged of the external object must hold weak references to clients of the PropertyChanged event.

Recursive dependencies to external objects are handled thanks to an auxiliary interface named INotifyChildProperty-
Changed. This interface is implemented by the NotifyPropertyChangedAttribute aspect. It is considered an implemen-
tation detail and cannot be implemented manually. Classes that do not implement the INotifyChildPropertyChanged
interface can only participate as terminal dependencies, i.e. they can be leaves but not intermediate nodes.

Limitations
The design goal of the NotifyPropertyChangedAttribute aspect is to be able to handle the majority of use cases in
real-world source code while requiring only an acceptable amount of compilation time. The dependency analysis
algorithm imposes several limitations:

• Calls to virtual methods (other than through the base keyword), abstract methods, interface methods or
delegates are not supported.

• Calls to static methods or methods of external classes are not supported unless they are decorated with the
PureAttribute custom attribute, or unless the method is a property getter in a supported dependency chain.

INotifyPropertyChanged

122

• Valuations of properties method return values are not supported. Only properties of fields or properties are
supported.

• Dependencies on properties of variables are not supported if the variable is assigned in a loop (while, for, ...)
or in an exception handling block.

See Handling Corner Cases on page 114 to learn how to cope with these limitations.

Raising notifications
Simplistic implementations of the INotifyPropertyChanged interface signal a change notification immediately after a
property has been changed. However, this strategy may cause subtle errors in client code.
Consider the following code:

[NotifyPropertyChanged]
class Invoice
{

public decimal Amount { get; private set; }
public decimal Tax { get; private set; }
public decimal Total { get; private set; }

public void Set(decimal amount, decimal tax)
{

/* 1 */ this.Amount = amount;
/* 2 */ this.Tax = tax;
/* 3 */ this.Total = amount + tax;

}

}

As a class invariant, the assumption Total == Amount + Tax should always be true.

However, suppose that the PropertyChanged event is raised immediately after the Amount property is set at line 1 of the
Set method. Clearly, for a client subscribing to this event, the class invariant would be broken at this specific moment.

Therefore, it is not safe to raise change notifications immediately after a change has been achieved. It is necessary to
wait until the object can be safely observed by external code, when all class invariants are valid again (i.e. when the
object state is consistent). A common best practice in object-oriented programming is to ensure that class invariants are
valid before the control flow goes back from the current object to the caller. Typically, it means that a private or
protected method can exit with an inconsistent object state, but public and internal methods must guarantee that the
object state is consistent upon exit.
The NotifyPropertyChangedAttribute aspect relies on this best practice and raises the property change notifications
just before the control flow exits the current object, that is, just before the last public or internal method in the call stack
for the current object exits.
Besides avoiding to expose invalid object state, this strategy also avoids the same property to be notified for change
several times during the execution of a single public method, which a potentially great positive performance impact.
To solve this problem, NotifyPropertyChangedAttribute aspect uses the following strategy:

1. Instead of causing immediate change notifications, field changes are buffered into a thread-local storage
named the accumulator .

2. Calls to public and methods are instrumented so the aspect can detect when the control flow exits the object.
At this moment, the accumulator is flushed and all change notifications are triggered.

It is possible to flush the accumulator at any time by invoking the NotifyPropertyChangedServicesRaiseEvents-
Immediate(Object) method.

You can suspend and resume notifications using the NotifyPropertyChangedServicesSuspendEvents and Notify-
PropertyChangedServicesResumeEvents methods.

Understanding the NotifyPropertyChanged Aspect

123

Remarks
The NotifyPropertyChangedAttribute aspect never evaluates property getters at runtime. This decision is deliberate
and aims at avoiding possible side-effects (lazy-initialization, logging, etc.). Therefore, it is possible that the algorithms
emit false positives, i.e. change notifications for properties whose values did not actually change.
The algorithm heuristically detects dependency cycles. If a cycle is detected, an exception is thrown instead of allowing
for an infinite update cycle.
All notifications are invoked on the thread on which the change is being made. The accumulator that buffers the
changes is a thread-local storage.

9.7. Suppressing False Positives
The NotifyPropertyChangedAttribute aspect, when applied to a class, raises the PropertyChanged event every time it
detects a possible change of a property, even when the actual value of the property doesn't change. By default, the aspect
doesn’t keep track of the property values because that would require the aspect to invoke property getters arbitrarily
outside of the developer’s control. And when property getters have any side effects (lazy-initialization, logging, etc.),
invoking them randomly is not a safe behavior.
In certain scenarios, such as rich client applications with many UI controls, redundant event notifications are not desired
because they cause excessive UI updates and can degrade the application responsiveness. You can avoid these redundant
event notifications by suppressing false positives in the NotifyPropertyChangedAttribute aspect.

This topic contains the following sections:
• Example of a false positive on page 124
• How to suppress false positives on page 125
• See Also on page 0

Example of a false positive
The following Calc class has two integer fields a and b, and a property Sum that returns the sum of these two numbers.
The Main method creates an instance of the Calc class and changes the fields from (a=1, b=2) to (a=2, b=1). There
are two PropertyChanged event notifications shown in the output, even though the actual Sum value doesn’t change in
the second case.

[NotifyPropertyChanged]
class Calc
{

private int a, b;

public int Sum
{

get { return this.a + this.b; }
}

public void Update(int a1, int b1)
{

this.a = a1;
this.b = b1;

}
}

static void Main()
{

Calc calc = new Calc();
((INotifyChildPropertyChanged) calc).PropertyChanged +=

(sender, eventArgs) =>

INotifyPropertyChanged

124

{
Console.WriteLine("Property {0} changed. New value = {1}.",

eventArgs.PropertyName,
sender.GetType().GetProperty(eventArgs.PropertyName).GetValue(sender));

};

calc.Update(1, 2);
calc.Update(2, 1);

}

Output:

Property Sum changed. Value = 3.
Property Sum changed. Value = 3.

How to suppress false positives
To suppress false positive event notifications, set the PreventFalsePositives property to true when you apply the aspect
to the target element.

[NotifyPropertyChanged(PreventFalsePositives = true)]
class Calc
{

// ...
}

If you run the test code snippet again after this change, you can see that there’s only one change notification now.

Property Sum changed. Value = 3.

CAUTION NOTE
Do not suppress false positive notifications in your class when the property getters in the class have side effects. In this
case reset the PreventFalsePositives property to its default value of false.

By enabling the PreventFalsePositives option of the NotifyPropertyChangedAttribute aspect you can reduce the
number of events raised in your application and improve your UI responsiveness.

Suppressing False Positives

125

INotifyPropertyChanged

126

CHAPTER 10

Parent/Child Relationships

The parent-child relationship is a foundational concept of object oriented design. There are three kinds of object
relationships in the UML specification:

• Aggregation is the parent-child (also named whole-part) relationship. It is implemented in PostSharp by the
AggregatableAttribute aspect described in Walkthrough: Annotating an Object Model for Parent-Child
Relationships on page 128.

• Composition is an aggregation relationship where the parent controls the lifetime their children. It is implemented
in PostSharp by the DisposableAttribute aspect pattern, which relies on the AggregatableAttribute aspect. For
details, see Walkthrough: Automatically Disposing Children Objects on page 132.

• Association is a simple reference between two objects.

Despite its importance, C# and VB have no keyword to represent aggregation. All C# and VB object references correspond
to an association. Therefore, most applications and frameworks tend to re-implement the aggregation relationship,
resulting in boilerplate code and defects. For instance, UI frameworks such as WinForms and WPF rely on a parent-child
structure.
PostSharp implements the Aggregatable pattern thanks to the AggregatableAttribute aspect, together with the Child-
Attribute, ReferenceAttribute and ParentAttribute custom attributes.

The Aggregatable pattern is used by other PostSharp aspects, including all threading models (ThreadAwareAttribute),
DisposableAttribute and RecordableAttribute. You can also use the aspect to automatically implement a parent-child
relationship in your own code.

In this chapter
Section Description
Walkthrough: Annotating an Object Model for Parent-
Child Relationships on page 128

This section shows how to prepare a class so that it can
participate in a parent-child relationship.

Walkthrough: Enumerating Child Objects on page 131 This section describes how to enumerate the children of
an object thanks to the visitor pattern.

Walkthrough: Automatically Disposing Children
Objects on page 132

This section shows how to automatically implement the
IDisposable interface so that children objects are
disposed when the parent object is disposed.

Annotating an Object Model programmat-
ically on page 135

This section describes how to annotate aggregatable
object models programatically.

Working With Collections on page 137 This section covers advanced topics related to collections
in aggregatable object models.

Using Immutable Collections on page 141 This section descirbes usage of immutable collections in
aggregatable object models.

Suppressing False Positives

127

10.1. Walkthrough: Annotating an Object Model for Parent-
Child Relationships
PostSharp provides several custom attributes that you can apply to your object model to describe the parent-child
relationships in a natural and concise way. The AggregatableAttribute aspect is applied to the object model classes, and
the properties are marked with ChildAttribute, ReferenceAttribute and ParentAttribute custom attributes. You can
also use AdvisableCollectionT and AdvisableDictionaryTKey, TValue classes to make your collection properties aware
of the Aggregatable pattern.
Below you can find a detailed walkthrough on how to add parent-child relationships implementation into existing object
models.
This topic contains the following sections:

• Applying through PostSharp Tools for Visual Studio on page 128
• Applying manually on page 129

Applying through PostSharp Tools for Visual Studio
When applying any of the threading model patterns using the wizard you may encounter the Relationships page.

This page provides you with the ability to establish the relationships between objects in an object tree. Simply select the
option desired for each complex object and the wizard will add these attributes for you.

NOTE
The wizard process will not address or change collections in the object parent-child relationships. You will need to
change collection types by hand.

Parent/Child Relationships

128

Applying manually
To apply the Aggregatable to an object model:

1. Add the AggregatableAttribute attribute to the parent and children classes. In the following examples, an
Invoice object owns several instances of the InvoiceLine class, therefore both classes must be annotated
with AggregatableAttribute. However, the Invoice does not own the Customer to which it is associated, so
the Customer class does not need the custom attribute.

NOTE
It is not strictly necessary to add the AggregatableAttribute aspect to a class whose instances will be
children but not parents, unless you want to track the relationship to the parent using the
IAggregatableParent property or the ParentAttribute custom attribute in this class (see below).

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new List<InvoiceLine>();
}

public Customer Customer { get; set; }
public IList<InvoiceLine> Lines { get; set; }

public Address DeliveryAddress { get; set; }
}

[Aggregatable]
public class InvoiceLine
{

private Product product;
public decimal Amount { get; set; }

}

[Aggregatable]
public class Address
{
}

Walkthrough: Annotating an Object Model for Parent-Child Relationships

129

2. Annotate fields and automatic properties of all aggregatable classes with the ChildAttribute or Reference-
Attribute custom attribute. Fields or properties of a value type must not be annotated.

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new List<InvoiceLine>();
}

[Reference]
public Customer Customer { get; set; }

[Child]
public IList<InvoiceLine> Lines { get; private set; }

[Child]
public Address DeliveryAddress { get; set; }

}

[Aggregatable]
public class InvoiceLine
{

[Reference]
private Product product;

public decimal Amount { get; set; }
}

[Aggregatable]
public class Address
{
}

3. Modify the code to use AdvisableCollectionT and AdvisableDictionaryTKey, TValue instead of standard .
NET collections for children fields. This change is necessary because all objects assigned to children fields/
properties must be aware of the Aggregatable pattern.
In our code example, we need to modify the constructor of the Invoice class and assign an Advisable-
CollectionT to the Lines field instead of a List.

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

Parent/Child Relationships

130

4. Optionally, add a field or property to link back from the child object to the parent, and add the Parent-
Attribute to this field/property. PostSharp will automatically update this field or property to make sure it
refers to the parent object.
In this example, we are adding a ParentInvoice property to the InvoiceLine class to link back to the Invoice
class.

[Aggregatable]
public class InvoiceLine
{

[Reference]
private Product product;

public decimal Amount { get; set; }

[Parent]
public Invoice ParentInvoice { get; private set; }

}

TIP
For better encapsulation, setters of parent properties should have private visibility. In case of parent fields,
the private visibility is preferred. User code should not manually set a parent field or property.

10.2. Walkthrough: Enumerating Child Objects
After you have declared the structure of your object graph on page 128, you will want to make use of it.
Both the ChildAttribute and ParentAttribute can be used to declare parent-child relationships for other patterns such
as Undo/Redo (RecordableAttribute) or threading models (ImmutableAttribute, FreezableAttribute, ...).

You can also use the Aggregatable pattern from your own code. The functionalities of this pattern are exposed by the
IAggregatable interface, which all aggregatable object automatically implement. This interface allows you to execute a
Visitor method against all child objects of a parent.
In the following example, we see how to implement recursive validation for an object model. We will assume that the
InvoiceLine and Address line implement an IValidatable interface.

Walkthrough: Enumerating Child Objects

131

To enumerate all child objects of a parent:
1. Cast the parent object to the IAggregatable interface.

var invoice = new Invoice();
IAggregatable aggregatable = (IAggregatable) invoice;

NOTE
The IAggregatable interface will be injected into the Invoice class after compilation. Tools that are not aware of
PostSharp may incorrectly report that the Invoice class does not implement the IAggregatable interface.
Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method.
This method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build
time.

NOTE
If you are attempting to access IAggregatable members on either AdvisableCollectionT or Advisable-
DictionaryTKey, TValue you will not be able to use the cast operator or the CastSourceType, Target-
Type(SourceType) method. Instead, you will have to use the QueryInterfaceT(Object, Boolean) extension
method.

2. Invoke the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method and pass a delegate to the
method to be executed.

var invoice = new Invoice();
IAggregatable aggregatable = invoice.QueryInterface<IAggregatable>();
int errors = 0;
bool isValid = aggregatable.VisitChildren((child, childInfo) =>

{
var validatable = child as IValidatable;
if (validatable != null)
{

if (!validatable.Validate())
errors++;

}
return true;

});

NOTE
The visitor must return a true to continue the enumeration and false to stop the enumeration.

10.3. Walkthrough: Automatically Disposing Children Objects
When you are working with hierarchies of objects, you sometimes run into situations where you need to properly dispose of
an object. Not only will you need to dispose of that object, but you likely will need to walk the object tree and recursively
dispose children of that object. To do this, we typically implement the IDisposable pattern and manually code the steps
required to shut down the desired objects, and call the Dispose method on other children objects. This cascading of
disposals takes a lot of effort and it is prone to mistakes and omissions.

Parent/Child Relationships

132

The DisposableAttribute aspect relies on the AggregatableAttribute aspect and, as a result, is able to make use of the
VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method to cascade disposals through child objects.

This topic contains the following sections:
• Disposing of object graphs on page 133
• Disposing of child collections on page 134
• Customizing the Dispose logic on page 135

Disposing of object graphs
Adding Disposable to an object

1. On the top level object add the DisposableAttribute.

[Disposable]
public class HomeMadeLogger
{

private TextWriter _textWriter;
private Stream _stream;
private MessageFormatter _formatter;

public HomeMadeLogger(MessageFormatter formatter)
{

_formatter = formatter;
_stream = new FileStream("our.log", FileMode.Append);
_textWriter = new StreamWriter(_stream);

}

public void Debug(string message)
{

_textWriter.WriteLine(_formatter.Format(message));
}

}

At this point the IDisposable interface will be implemented on the HomeMadeLogger class. Now any code
making use of HomeMadeLogger is able to execute the HomeMadeLogger.Dispose() method.

Walkthrough: Automatically Disposing Children Objects

133

2. Identify the fields and properties that represents references to child objects. To do this, add the Child-
Attribute to the fields and properties that expose those child objects, and the ParentAttribute to fields and
properties that represent plain references. In the case of the HomeMadeLogger there are two objects, the
_stream and the _textWriter fields, which should also be disposed when the HomeMadeLogger is disposed.

[Disposable]
public class HomeMadeLogger
{

[Child]
private TextWriter _textWriter;
[Child]
private Stream _stream;
[Reference]
private MessageFormatter _formatter;

public HomeMadeLogger(MessageFormatter formatter)
{

_formatter = formatter;
_stream = new FileStream("our.log", FileMode.Append);
_textWriter = new StreamWriter(_stream);

}

public void Debug(string message)
{

_textWriter.WriteLine(_formatter.Format(message));
}

}

The _stream and _textWriter child objects will now have their Dispose() method called automatically when
the HomeMadeLogger is disposed. Since both the _stream and _textWriter objects are framework types that
already implement IDisposable, adding the DisposableAttribute aspect to those object types is not
necessary.

NOTE
Fields that are marked as children but are assigned to a object that does not implement IDisposable (either manually
or through DisposableAttribute) will simply be ignored during disposal.

Disposing of child collections
Child objects that need to be disposed of don’t always exist in a one-to-one relationship with the parent object. It’s
common to see collections of child objects that need disposal as well. In that case you need to dispose of each entry in
a collection.

Adding Disposable to collections
1. Use a collection type that supports the IAggregatable interface. We do this by making use of Advisable-

CollectionT or AdvisableDictionaryTKey, TValue class.

[Disposable]
public class HomeMadeLogger
{

[Child]
public AdvisableCollection<Context> LoggingContexts { get; set; }

}

Parent/Child Relationships

134

2. To make the LoggingContexts collection automatically dispose when the HomeMadeLogger object disposes
you need to ensure that the Contexct class has the DisposableAttribute aspect on it.

[Disposable]
public class Context
{

//...
}

With that, the HomeMadeLogging class and all of the child objects in the LoggingContexts collection are hooked together
and they will all be disposed of in an orderly fashion when an instance of the HomeMadeLogging object is disposed.

Customizing the Dispose logic
There will be times when you have objects that need custom disposal logic. At the same time you may want to
implement a parent child relationship and make use of the DisposableAttribute.

To add your own logic to the Dispose method:
1. Create a method with exactly the following signature:

protected virtual void Dispose(bool disposing)

2. Include your own logic.

In the following example, we are customizing the Dispose pattern to expose the IsDispose property:

[Disposable]
public class MessageFormatter : Formatter
{

[Child]
MessageSink sink;

public bool IsDisposed { get; private set; }

protected virtual void Dispose(bool disposing)
{

this.IsDisposed = true;
}

}

Once you have done this, PostSharp will properly run your custom Dispose logic as well as running any of the parent
and child implementations of the DisposableAttribute that exist for the object.

CAUTION NOTE
The DisposableAttribute aspect does not automatically dispose the object when it is garbage collected. That is, the
aspect does not implement a destructor. If you need a destructor, you have to do it manually and invoke the Dispose.

10.4. Annotating an Object Model programmatically
There are times where you cannot or don't want to add custom attributes manually.

Annotating an Object Model programmatically

135

For instance, you cannot add any custom attribute to an auto-generated field backing a XAML element. The WPF designer
generates C# code from your XAML files and stores them in i.g.cs files well hidden in the obj folder. You cannot modify
these files directly.
Another scenario is when you have a large amount of fields and don't want to annotate each of them individually.
Field rules allow you to annotate a field as a child or a reference programmatically, without adding a custom attribute to
each field manually.
In the following example, let's consider a class where PostSharp shows an error message COM002: “Field/property Invoice-
Line.product must be annotated with a custom attribute [Child], [Reference] or [Parent].”

[Aggregatable]
public class InvoiceLine
{

private Product product;

public decimal Amount { get; set; }
}

To automatically mark all fields as references by default:
1. Create a class inherited from the FieldRule class.

public class RefererenceFieldRule : FieldRule

2. Override the GetRelationshipInfo(FieldInfo) method. PostSharp calls the GetRelationshipInfo(FieldInfo)
method for each field that is not annotated with the ChildAttribute, ReferenceAttribute or ParentAttribute
custom attribute. The GetRelationshipInfo(FieldInfo) method allows you to specify the field relationship by
returning a RelationshipInfo instance.

public override RelationshipInfo? GetRelationshipInfo(FieldInfo field)
{

return new RelationshipInfo(RelationshipKind.None, RelationshipKind.Reference);
}

3. Decorate your project’s assembly with a RegisterFieldRuleAttribute custom attribute to activate your field
rule.

[assembly: RegisterFieldRule(typeof(RefererenceFieldRule))]

CAUTION NOTE
You have to mark each project assembly to make your FieldRule active in the whole solution.

Now PostSharp considers all fields without any Parent-Child annotation as a reference and doesn’t show any error for the
product field.

Parent/Child Relationships

136

NOTE
PostSharp has two built-in rules: one rule for auto-generated WinForms fields and one rule for auto-generated XAML fields.

<Windowx:Class="WpfApp.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">
<Grid>

<Buttonx:Name="myButton"/>
</Grid>f

</Window>

In this example the WPF designer generates a myButton field to a MainWindow class. Both the myButton field and the MainWindow class are indirectly
inherited from System.Windows.Controls.Control20. The built-in rule annotates the myButton field as a reference automatically.

10.5. Working With Collections
It would not be possible to implement the Aggregatable pattern without support for collection classes. However, collections
of the .NET base class libraries cannot be reliably extended to support the Aggregatable pattern. Therefore, code that
implements the Aggregatable pattern must rely on collection classes defined by PostSharp, namely AdvisableCollectionT,
AdvisableDictionaryTKey, TValue, AdvisableKeyedCollectionTKey, TItem and AdvisableHashSetT.

This topic contains the following sections:
• Understanding the need for specific collections on page 137
• Replacing standard collections with advisable collections on page 138
• Casting advisable collections on page 138
• Controlling the status of collections in the parent-child relationship on page 139
• Enumerating children and parent surrogates on page 140
• Collections of references on page 140

Understanding the need for specific collections
In the following example, an Invoice entity is composed of one instance of the Invoice class and several instances of
the InvoiceLine class. The relationship between the Invoice and InvoiceLine classes is implemented using a
collection.

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new List<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class InvoiceLine
{
}

When we add a new element to the Lines collection, we also need to update the parent-child relationship between the
corresponding invoice and invoice line. It is not possible to do this with the standard ListT class, so we need to build a
specialized aggregatable collection class instead. However, we may later decide to apply another pattern to our object

20. https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx

Working With Collections

137

https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx
https://msdn.microsoft.com/en-us/library/system.windows.controls.control.aspx

model, such as a threading model or undo/redo. This new pattern would in turn require support from the collection
class. Creating new collection classes for each pattern (and potentially for each pattern combination) is clearly
unmanageable.
Instead of providing a new collection class for each specific behavior we need to inject, PostSharp introduces the
concept of advisable collections. Advisable collections are collection classes into which PostSharp can inject behavior
dynamically, at runtime, according to the field to which they are assigned. Advisable collections are a way to make the
collection "inherit" the pattern of the parent class
Let's modify our previous example to work correctly with the Aggregatable aspect.

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class InvoiceLine
{
}

As you can see, the only change we made is using AdvisableCollectionT class instead of ListT. The Aggregatable
aspect applied to the Invoice class detects that the child property is an advisable collection and applies dynamic
Aggregatable advice to the collection instance at runtime. This turns our collection of invoice lines into an aggregatable
collection. If we apply another aspect to the Invoice class later, it can add new behaviors to this collection in the same
way.

Replacing standard collections with advisable collections
The PostSharp.Patterns.Collections namespace defines advisable collection classes that are highly compatible with
the collection types of the .NET base class libraries.
The following table shows how advisable collections map to standard collections.

Advisable collection Replacement for
AdvisableCollectionT Array, ListT, CollectionT, ObservableCollectionT

AdvisableDictionaryTKey, TValue DictionaryTKey, TValue

AdvisableKeyedCollectionTKey, TItem KeyedCollectionTKey, TItem

CAUTION NOTE
Interfaces IReadOnlyListT and IReadOnlyCollectionT are not implemented.

Casting advisable collections
Patterns such as Aggregatable, Recordable or Threading Models dynamically inject advices into advisable collections.
These advice typically expose an interface, respectively IAggregatable, IRecordable and IThreadAware. Because
interfaces are introduced at run-time and not at build-time, you cannot use the normal type casting constructs to access
the interface members.

Parent/Child Relationships

138

Instead of a normal cast, you can use the QueryInterfaceT(Object, Boolean) extension method to access interfaces
implemented by the given instance. This method will return the proper interface implementation irrespective how the
interface is implemented: directly in the source code, introduced by PostSharp aspect at build time, or added
dynamically at run time.
The following code snippet gets the IAggregatable interface of the Lines collection in the example above:

IAggregatable aggregatable = invoice.Lines.QueryInterface<IAggregatable>();

By default, the QueryInterfaceT(Object, Boolean) method throws InvalidCastException if the given instance
doesn't implement the queried interface. You can also safely check whether the interface is implemented by passing
false as a method argument.

if (collection.QueryInterface<IAggregatable>(false) != null)
{
}

Controlling the status of collections in the parent-child relationship
Collections play a special role in implementing the parent-child relationships between classes. Collections are often
instruments instead of first-class entities of the object model. When enumerating children of a class, one generally
wants to avoid the collections themselves to be returned, but only items of these collections. Additionally, the Parent
property of a child object should typically refer to the parent entity and not to the collection that contains the child.
Consider the following example:

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class InvoiceLine
{

[Parent]
public Invoice Invoice { get; private set; }

}

The Invoice class contains a collection of InvoiceLine instances. We want each item of the Lines collection to be a
child of the Invoice instance. However, the collection itself should not be considered a child of the Invoice.
Additionally, we want the InvoiceLine.Invoice property to be set to the Invoice, not to the collection.

To implement this behavior, PostSharp needs to give a different status to collections than to other entities. This concept
is named a parent surrogate, because the collection acts as a surrogate (or proxy) between the parent and its children.
Any aggregatable object can act as a parent surrogate, but only collections act as parent surrogates by default. You can
override the default behavior by setting the ChildAttributeIsParentSurrogate property.

In the next example, the Lines collection will be treated as a first-class entity.

[Aggregatable]
public class Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();

Working With Collections

139

}

[Child(IsParentSurrogate = false)]
public IList<InvoiceLine> Lines { get; private set; }

}

[Aggregatable]
public class InvoiceLine
{

[Parent]
public IList<InvoiceLine> Parent { get; private set; }

}

To cause a custom class to behave like a parent surrogate by default, set the IsParentSurrogate property of the
AggregatableAttribute applied on your class to true. In this case it's not allowed to override the value in the [Child]
attributes applied to individual properties.

[AggregatableAttribute(IsParentSurrogate = false)]

Enumerating children and parent surrogates
The default behavior of the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method is to skip the
surrogate collection itself and invoke the ChildVisitor delegate on each item of the collection. In our first example,
calling the VisitChildren(ChildVisitor, ChildVisitorOptions, Object) method on the Invoice instance will
invoke the visitor on the items of the Lines collection, but not on the collection instance itself.

You can customize this behavior by providing one or more flags for the ChildVisitorOptions parameter of the
method. The ChildVisitorOptions.IncludeParentSurrogates flag will cause the visitor to be additionally invoked on
the instances of the surrogate collections, while the ChildVisitorOptions.ExcludeIndirectChildren flag will exclude
the items of such collection from being visited.

Collections of references
As we showed earlier, when you annotate the collection property with the [Child] attribute, collection items become
children of the class instance.
In certain situations, you may want to have a collection of references. The collection itself is still marked with the
[Child] custom attribute because it would make sense from the point of view of other patterns (for instance, changes
in the collection must be recorded by the Recordable pattern). However, the collection items themselves must not be
considered children of the entity.
To implement this requirement, you can set the ChildAttributeItemsRelationship property to RelationshipKind.
Reference.

In the example below, the RelatedOrders collection is a child and therefore its changes are being recorded by the
Recordable aspect. However, collection items are not children of the parent entity, because related orders do not
belong to the invoice.

[Recordable]
public class Invoice
{

public Invoice()
{

this.Lines = new AdvisableCollection<InvoiceLine>();
this.RelatedOrders = new AdvisableCollection<Order>();

}

[Child]
public IList<InvoiceLine> Lines { get; private set; }

[Child(ItemsRelationship = RelationshipKind.Reference)]
public IList<Order> RelatedOrders { get; private set; }

Parent/Child Relationships

140

}

10.6. Using Immutable Collections
In section Working With Collections on page 137, we explained the need to replace standard .NET collections by special
advisable collections of the PostSharp.Patterns.Collections namespace. These collections come with a significant
inconvenient: they have a significant performance and memory overhead. In many situations, collections can be replaced by
immutable collections. Immutable collections are collections whose content never changes after instantiation. Adequate use
of immutable collections can significantly improve application performance and simplify API design compared to mutable
collections, whether standard or advisable.
Immutable collections are implemented in the System.Collections.Immutable namespace, contained in the System.
Collections.Immutable NuGet package.

The Aggregatable pattern and threading models support immutable collections. When you assign an immutable collection
to a child field of a parent object, items of the collection become children of the parent object. Immutable collections
behave similarly than other types, so you still have to use the ChildAttribute and ReferenceAttribute custom attributes
as usually.

Using Immutable Collections

141

Parent/Child Relationships

142

CHAPTER 11

Undo/Redo

Most business application users are familiar with applications that have the ability to undo and redo changes that they have
made. It’s not common to see this functionality in custom built applications because it is quite difficult to do. Despite this
difficulty, undo/redo is consistently mentioned on the top of users' wish list.
The RecordableAttribute aspect makes it much easier to add undo/redo to your application by automatically appending
changes done on your object model to a Recorder that you can then bind to your user interface. Unlike other approaches
to undo/redo, the RecordableAttribute aspect only requires minimal changes to your source code.

In this chapter
Section Description
Making Your Model Recordable on page 143 The first step is to make your model classes This section

shows how to add the RecordableAttribute aspect to
the model classes to enable the undo/redo functionality.

Adding Undo/Redo to the User Interface on page 145 This section describes how to expose the undo/redo
functionality to the application's users.

Customizing Undo/Redo Operation Names on page 147 This section shows how to group changes into logical
operations and give them a name that is meaningful to
the application's users.

Assigning Recorders Manually on page 151 This section explains how to customize the assignment of
recordable objects to recorders.

Adding Callbacks on Undo and Redo on page 153 This section shows how to execute custom logic when
undo/redo operations occur in a recordable object.

Understanding the Recordable Aspect on page 153 This section describes the concepts and architecture of the
RecordableAttribute aspect.

11.1. Making Your Model Recordable
To make an object usable for undo/redo operations, you will need to add the RecordableAttribute aspect to the class.
This aspect instruments changes to fields and records them into a Recorder. The aspect also instruments public methods to
group field changes into logical operations.
This topic contains the following sections:

• Making a class recordable using PostSharp Tools for Visual Studio on page 144
• Making a class recordable manually on page 145
• Working with object graphs and collections on page 145

Making Your Model Recordable

143

Making a class recordable using PostSharp Tools for Visual Studio
To make a class recordable using PostSharp Tools for Visual Studio:

1. First place the caret on the name of the object that you want to make recordable. The smart tag will appear
below the object name. Expand it and select "Add another aspect...".

2. In the Add Another Aspect wizard expand the Model section, select "Enable undo/redo", and click Next.

3. Once the wizard has completed the object will now be flagged as recordable.

[NotifyPropertyChanged]
[Recordable]
public class Person
{

public string FirstName { get; set; }
public string LastName { get; set; }
public int Age { get; set; }

}

By adding the RecordableAttribute aspect to the Person class all of the properties that are primitive types
will be recorded when they change.

Undo/Redo

144

Making a class recordable manually
To make the class recordable manually:

1. Install the PostSharp.Patterns.Model package using NuGet.
2. Add the RecordableAttribute to the class.

Working with object graphs and collections
In the example above, the Invoice class just had a few fields of a primitive type (int, string, ...). In real-world
application, objects are not isolated entities, but are parts of larger structures named object graphs.
The RecordableAttribute aspect needs to understand the parent-child structure of your object graphs. It relies on the
AggregatableAttribute aspect for this purpose.

Therefore, when adding the RecordableAttribute aspect to a class, you need to complete a few more steps:

• Annotate fields with the ChildAttribute, ReferenceAttribute or ParentAttribute custom attribute.

• Replace arrays and collections with instances of the AdvisableCollectionT and AdvisableDictionaryTKey,
TValue classes.

See Parent/Child Relationships on page 127 for more information.

11.2. Adding Undo/Redo to the User Interface
The Undo/Redo functionality that you added to your codebase needs to be made available to the users. Users will want to
have the ability to move forwards and backwards through the operations that they too and have been recorded.
This topic contains the following sections:

• Using the ready-made WPF controls on page 145
• Clearing the initial history on page 146
• Creating custom undo/redo controls on page 147

Using the ready-made WPF controls
PostSharp includes two button controls UndoButton and RedoButton that you can add to your application.

To add Undo/Redo to a WPF window:
1. Install the PostSharp.Patterns.Model.Controls package using NuGet.
2. Add the following namespace declaration to the root element of your XAML file:

xmlns:model="clr-namespace:PostSharp.Patterns.Model.Controls;assembly=PostSharp.Patterns.Model.Controls"

Adding Undo/Redo to the User Interface

145

3. To add Undo and Redo buttons to the user interface, include the following two lines of Xaml.

<model:UndoButton HorizontalAlignment="Left" Margin="22,24,0,0" VerticalAlignment="Top" />
<model:RedoButton HorizontalAlignment="Left" Margin="64,24,0,0" VerticalAlignment="Top"/>

Your users are now able to make a changes in the user interface and Undo and/or Redo those changes at any
point that they want.

Clearing the initial history
If we were to open the Customer management screen you would notice that the Undo button has a number of actions
listed under it.

Those actions are listing the changes that were taken when the different Person instances were loaded and their
properties were set. Most users will only want to see actions that they have manually taken in the screen. As such, you
will need to manually interact with the Recorder to ensure that the Undo button list is empty when the window opens.

To provide an empty list of recorded actions when the windows is initially opened, open the ViewModelMain class and
find the constructor. Add the following as the last line in the constructor:

RecordingServices.DefaultRecorder.Clear();

The Recorder class is accessed through the RecordingServicesDefaultRecorder property. This property contains the
current Recorder instance that is being used by the RecordableAttribute aspect. The Recorder class has two
collections, UndoOperations and RedoOperations, which contain all of the past operations that can be undone and
redone. The Clear method removes all operations from both of those collections.

Now when you open the Customer management screen both the Undo and Redo buttons will show no history. This is
the simplest type of Undo/Redo implementation that you can do. It will record each property change operation

Undo/Redo

146

separately in the Undo and Redo UI buttons which probably isn’t what you, or your users, will want to see. Read
Customizing Undo/Redo Operation Names on page 147 to learn how to record groupings of operations that make
sense to your business users.

Creating custom undo/redo controls
If the buttons provided by PostSharp don't meet your requirements, you can create your own controls for WPF,
Windows Phone or WinRT.
Custom controls will typically provide a front-end to the global Recorder exposed on the RecordingServicesDefault-
Recorder property, and we provide a view for the UndoOperations and RedoOperations collections. Controls typically
use the RecorderUndo and RecorderRedo methods.

11.3. Customizing Undo/Redo Operation Names
The example of previous sections displays the list of operations appearing in the two UI buttons. That list of operations
references the setters on the different individual properties in a very technical manner, for instance the operation of setting
the first name is named set_FirstName, according to the name of the property in source code.

End users will want to see the operations described in meaningful business terms, not technical ones. This article will show
you how to explicitly name the recording operations that will take place in your code.
This topic contains the following sections:

• Understanding the default operation naming mechanism on page 147
• Setting operation names declaratively on page 148
• Setting operation names dynamically on page 148
• Using the OperationFormatter class on page 149

Understanding the default operation naming mechanism
From the end user's perspective, the undo/redo feature exposes a flat list of operations that can be undone or redone.
From a system perspective, an operation is composed of changes to individual fields and collections. For instance,
moving a picture on a design surface is seen as a single operation Move by the user, but it is composed of two changes
in fields x and y.

Let's see this in a code example:

[Recordable]
public class Picture
{

private double x, y;

public double X
{

get { return x; }
set { x = value; }

}

public double Y
{

get { return y; }
set { y = value; }

}

public void Move(double x, double y)
{

this.X = x;
this.Y = y;

}

Customizing Undo/Redo Operation Names

147

}

public static class Program
{

public static void Main()
{

var picture = new Picture();

picture.Move(10, 10);

// 1 undo operation at this point: Move.

picture.X = 20;

// 2 undo operations at this point: set_X, Move.

picture.Y = 20;

// 3 undo operations at this point: set_Y, set_X, Move.
}

}

By default, the RecordableAttribute aspect will automatically open a new operation for any public method, unless the
current Recorder already has an open operation. Therefore, invoking the Move method results in a single operation,
even if it modifies two fields. Note that the Move method invokes the setters of public properties X and Y, which are
themselves public methods, but they do not open new operations since they run from within the Move method.
However, when properties X and Y are accessed from outside of the Picture class, new operations are created for the
set_X and set_Y methods.

Setting operation names declaratively
By default, the name of an operation is set to the name of the method. There are various ways to customize this name,
and the easiest is to add a RecordingScopeAttribute custom attribute to the public method.

In the following example, we're declaring a different name for the Move method:

[Recordable]
public class Picture
{

private double x, y;

[RecordingScope("Moving the picture")]
public void Move(double x, double y)
{

this.x = x;
this.y = y;

}

}

With that RecordingScopeAttribute added, the recorded operation will now have a name of Moving the picture
instead of just Move.

Setting operation names dynamically
Setting the operation name declaratively is convenient but relatively rigid. When more flexibility is needed, you can use
the RecorderOpenScope(String, RecordingScopeOption) method to control the creation and naming of scopes.

In the following example, we will modify the Move method to include the target position in the operation description.

Undo/Redo

148

To dynamically name an operation:
1. Add the [RecordingScope(RecordingScopeOption.Skip)] custom attribute to the method, so that the

method does not automatically define a new operation. Exclude from the Recorder the method which
contains the block of code that you wish to encapsulate in a recording.

[RecordingScope(RecordingScopeOption.Skip)]
public void Move(double x, double y)

NOTE
This step is not required if you are starting the operation from a non-recordable object.

2. Invoke the OpenScope(String, RecordingScopeOption) method and wrap the code you want to record in a
using block.

[Recordable]
public class Picture
{

private double x, y;

[RecordingScope(RecordingScopeOption.Skip)]
public void Move(double x, double y)
{

string scopeName = string.Format("Moving to ({0}, {1})", x, y);

using (RecordingScope scope = RecordingServices.DefaultRecorder.OpenScope(scopeName))
{

this.x = x;
this.y = y;

}
}

}

NOTE
If you do not to add this custom attribute to the method, the RecordableAttribute aspect will automatically
create a new scope to execute the method, and your call of the OpenScope(String, RecordingScope-
Option) method will be ignored.

Using the OperationFormatter class
Explicitly declaring the name for every operation would be a large and tedious task. It is possible to write your own
naming engine and apply that set of naming rules across the entire application. To achieve this, derive your own
implementation from the OperationFormatter class. to the

In the following example, we will create a custom formatter that reads the operation name from the DisplayName-
Attribute custom attribute and display the value to which a property has been set.

To create and register a custom OperationFormatter:
1. Create a new class and inherit from the OperationFormatter class.

public class MyOperationFormatter : OperationFormatter
{
}

Customizing Undo/Redo Operation Names

149

2. Create a constructor for the new formatter class.

public class MyOperationFormatter : OperationFormatter
{

public MyOperationFormatter(OperationFormatter next) : base(next)
{
}

}

3. Next you need to override the FormatOperationDescriptor(IOperationDescriptor) method and write your
custom logic for generating a custom operation name.

class MyOperationFormatter : OperationFormatter
{

public MyOperationFormatter(OperationFormatter next) : base(next)
{
}

protected override string FormatOperationDescriptor(IOperationDescriptor operation)
{

if (operation.OperationKind != OperationKind.Method)
return null;

var descriptor = (MethodExecutionOperationDescriptor) operation;

if (descriptor.Method.IsSpecialName && descriptor.Method.Name.StartsWith("set_"))
{

// We have a property setter.

var property = descriptor.Method.DeclaringType.GetProperty(
descriptor.Method.Name.Substring(4),
BindingFlags.Instance|BindingFlags.Public|BindingFlags.NonPublic);

var attributes =
(DisplayNameAttribute[]) property.GetCustomAttributes(typeof(DisplayNameAttribute), false);

if (attributes.Length > 0)
return string.Format("Set {0} to {1}", attributes[0].DisplayName, descriptor.Arguments[0] ?? "null");

}
else
{

// We have another method.

var attributes = (DisplayNameAttribute[])
descriptor.Method.GetCustomAttributes(typeof(DisplayNameAttribute), false);

if (attributes.Length > 0)
return attributes[0].DisplayName;

}

return null;
}

}

NOTE
Formatters create a chain of responsibility. If one formatter is unable to provide a name it will ask the next
formatter in the chain to attempt to provide a name. To make the hand-off occur the FormatOperation-
Descriptor(IOperationDescriptor) method needs to return null. If it returns anything else the chain is
broken and the returned value is used as a name.

Undo/Redo

150

4. Finally, you need to add your custom name formatter into the chain of responsibility.

RecordingServices.OperationFormatter = new MyOperationFormatter(RecordingServices.OperationFormatter);

Because the RecordingServices is making use of a chain of responsibility, you are able to insert as many
custom name formatters as you want. You are also able to determine their order of execution based on the
order that you insert them into the chain of responsibility.

11.4. Assigning Recorders Manually
By default, all recordable objects are attached to the global Recorder exposed on the RecordingServicesDefaultRecorder
property. There is nothing you have to do to make this happen. There may be circumstances where you want to create and
assign your own recorder to the undo/redo process. There are two different ways that you can accomplish this.
This topic contains the following sections:

• Overriding the default RecorderProvider on page 151
• Attaching a recorder manually on page 152

Overriding the default RecorderProvider
By default, the RecordableAttribute aspect attaches an object to a Recorder as soon as its constructor exits. To
determine which Recorder should be used, the aspect uses the RecordingServicesRecorderProvider service. By
default, this service always serves the global instance that is also exposed on the RecordingServicesDefaultRecorder
property.
You can override this automatic assignment to inject your own RecorderProvider to into the process.

To use a custom RecorderProvider:
1. Create a class inherited from the RecorderProvider class.

public class MyProvider : RecorderProvider
{
}

2. Implement the chaining constructor. The RecorderProvider that you inherited from requires a Recorder-
Provider as a constructor parameter. This constructor parameter facilitates the chain of responsibility for
providers that can be run when a Recorder is requested. To keep the chain of responsibility intact your custom
RecorderProvider will need to accept a RecorderProvider in it's constructor and pass that to the base
constructor.

public class MyProvider : RecorderProvider
{

public MyProvider(RecorderProvider next) : base (next)
{
}

}

Assigning Recorders Manually

151

3. Override the GetRecorderCore(Object) method.

public class MyProvider : RecorderProvider
{

public MyProvider(RecorderProvider next) : base(next)
{
}

public Recorder GetRecorderImpl(object obj)
{

//where you will write code to create a new Recorder instance
throw new NotImplementedException();

}
}

4. Insert an instance of your custom RecorderProvider class into the chain of responsibility by assigning it to the
RecordingServicesRecorderProvider.

RecordingServices.RecorderProvider = new MyProvider(RecordingServices.RecorderProvider);

NOTE
RecorderProvider is a chain of responsibility. As such, if a GetRecorderCore(Object) method returns null then the
chain will move on to the next RecorderProvider and attempt to get a Recorder to use.

By overriding the default RecorderProvider you are able to assign a custom Recorder across the entire application.

Attaching a recorder manually
The second way that you can add a Recorder to objects is to manually assign them when, and where, they are needed.

To manually assign a Recorder to an object:
1. Set the RecordableAttributeAutoRecord property to false for that class.

[Recordable(AutoRecord = false)]
public class Invoice
{
}

NOTE
By disabling AutoRecord you are telling the RecordingServices that this object should not be included in
recordings unless the recording is explicitly declared in your code.

2. Create a new instance of a Recorder and attach the object to it using the Attach(Object) method.

var invoice = new Invoice();

var recorder = new Recorder();
recorder.Attach(invoice);

You can then use the Detach(Object) method to remove the Recorder from the object in question.

Undo/Redo

152

NOTE
An object must always have the same Recorder as its parent has unless the parent has no Recorder assigned. Because
of this, whenever a Recorder is assigned to an object, all of the child objects will have that same Recorder assigned to
them. However, if you detatch a child object from it's parent the child object's assigned Recorder will not be detached.
For more information about parent-child relationships, see Parent/Child Relationships on page 127.

11.5. Adding Callbacks on Undo and Redo
You may run into situations where you will want to execute some code before or after an object is being modified by an
Undo or Redo operation. This capability is provided through the IRecordableCallback interface.

In the following example, we will show how to integrate the RecordableAttribute aspect with a custom implementation of
INotifyPropertyChanged (the standard NotifyPropertyChangedAttribute aspect is already integrated with the
RecordableAttribute aspect so you don't need to worry).

[Recordable]
public class Invoice : INotifyPropertyChanged, IRecordableCallback
{

public void OnReplaying(ReplayKind kind, ReplayContext context)
{
}

public void OnReplayed(ReplayKind kind, ReplayContext context)
{

OnPropertyChanged("ShippingDate");
}

private DateTime _shippingDate;
public DateTime ShippingDate
{

get { return _shippingDate; }
set
{

_shippingDate = value;
OnPropertyChanged("ShippingDate");

}
}

public event PropertyChangedEventHandler PropertyChanged;

protected virtual void OnPropertyChanged(string propertyName = null)
{

var handler = PropertyChanged;
if (handler != null) handler(this, new PropertyChangedEventArgs(propertyName));

}
}

For more information, see the reference documentation for the IRecordableCallback interface.

11.6. Understanding the Recordable Aspect
This section describes how the RecordableAttribute aspect is implemented. It helps developers and architects to
understand the behavior and limitations of the aspect.

Adding Callbacks on Undo and Redo

153

This topic contains the following sections:
• Overview on page 154
• Scopes and Logical Operations on page 154
• Atomic Operations on page 155
• Primitive Operations on page 155
• Restore Points on page 155
• Implementing IEditableObject on page 0
• Callback Methods on page 156
• Memory Consumption on page 156

Overview
When the RecordableAttribute aspect is applied to a class, the aspect records changes performed on instances of this
class. Changes are represented as instances of the Operation class. For instance the FieldOperationT class represents
the operation of changing the value to a field. All operations implement the Undo(ReplayContext) and Redo(Replay-
Context) methods. For instance, the FieldOperationT class stores both the new and old value so that the operation
can be undone and redone.
The changes are recorded into the Recorder object. The Recorder maintains two collections of operations: Undo-
Operations and RedoOperations. The RecorderUndo method takes the last operation from the UndoOperations
collection, invokes OperationUndo(ReplayContext) for this operation, and moves the operation to the RedoOperations
collection. The RecorderUndo method works symmetrically.

It would not be safe, however, to allow users to undo changes in the object model back to any arbitrary point in history.
Users don't want to undo primitive changes to an object model, but to undo whole operations understood from a user's
perspective. This is why the UndoOperations and RedoOperations collections don't expose primitive changes on the
object model but logical operations.
By default, logical operations are automatically opened when calling a public or internal method of a recordable object,
and closed when the same method exits. The principal use case of scopes is to define user-friendly operation names.
There is typically a single instance of this class per application, but there could be many if needed (for instance in a
multi-document application). The default single instance is accessible from the RecordingServicesDefaultRecorder
property. By default, recordable objects are attached to the default recorder immediately after completion of the
constructor. See Assigning Recorders Manually on page 151 to learn how to customize this behavior.

Scopes and Logical Operations
Scopes are a mechanism to aggregate several primitive operations into logical operations that make sense for the end-
user. Logical operations are represented by the CompositeOperation class.

In general, logical operations form a flat structure: the UndoOperations and RedoOperations collections are flat double
linked lists, and each CompositeOperation typically contains primitive operations such as a field value change.

Scopes define boundaries of logical operations. Scopes can be opened using the RecorderOpenScope(RecordingScope-
Option) method, which returns an object of type RecordingScope. This class implements the IDisposable interface,
making it convenient to define scopes with the using statement.

By default, the RecordableAttribute aspect encloses all instance public and internal methods with an implicit scope.
That is, by default, public and internal methods define boundaries of logical operations.
Unlike logical operations, scopes are generally nested. Scope nesting typically happens when a public method directly
or indirectly invokes another public method. In general, only the outermost scope results in creating a logical operation.
This is why, in general, logical operations form a flat structure.
Because they are visible to users, logical operations must be given a user-friendly name. PostSharp defines default
names that are not user-friendly. The responsibility of generating operation names is implemented by the Operation-

Undo/Redo

154

Formatter class. You can provide your own OperationFormatter to generate operations names on demand, or you can
set the name explicitly in source code for each operation.
Scope names can be declaratively defined using the RecordingScopeAttribute custom attribute, or programmatically
using the RecorderOpenScope(String, RecordingScopeOption) method. To learn more about operation names, see
Customizing Undo/Redo Operation Names on page 147.

Atomic Operations
Atomic scopes are scopes whose changes are automatically rolled back when it does not complete successfully, typically
when an exception occurs. The rollback is implemented using the undo mechanism. Atomic scopes are a similar concept
than transactions, but multi-threading is not taken into account. Therefore, other threads may see changes that have
not been "committed", because the Recordable\ pattern does not have a notion of transaction isolation.
Atomic scopes cause composite operations to have a tree structure. However, the concept of atomic structure does not
surface to the users. Therefore, from a user's perspective, the UndoOperations and RedoOperations collections still
present linear lists of logical operations.
Scope defined declaratively using the RecordingScopeAttribute custom attribute, or programmatically using the
RecorderOpenScope(RecordingScopeOption) method.

Primitive Operations
The following table lists the primitive operations that are automatically appended to the Recorder object by the
RecordableAttribute aspect.

Class Description
FieldOperationT Represents the operation of setting a field to a different value.

CollectionOperationT Represents operations on collections.

DictionaryOperationTKey,
TValue

Represents operations on dictionaries.

RecorderOperation Represents the operation of attaching or detaching an object to or from a
Recorder.

Additionally to these system-defined operations, it is possible to implement custom operations by deriving from the
Operation abstract class. You can then use the RecorderAddOperation(Operation) method to append the custom
operation to the Recorder.

Logical operations, which are presented to the end user, are typically represented as instances of the Composite-
Operation class.

Restore Points
Restore points act like bookmarks in the list of operations. They allow to undo or redo operations up to a specific point.
You can use the RecorderAddRestorePoint(String) method to create a restore point. The method returns an instance
of the RestorePoint class, which derives from the Operation class. Unlike other operations, you can safely remove a
restore point from the history thanks to the Remove method.

Implementing IEditableObject
You can use the EditableObjectAttribute custom attribute to automatically implement the IEditableObject
interface. The implementation is based on the RecordableAttribute aspect. It creates a RestorePoint when the
BeginEdit method is invoked, removes the restore point upon EndEdit, and undoes changes up to the restore point
when CancelEdit is called.

Understanding the Recordable Aspect

155

Because of this implementation strategy, it is possible that CancelEdit actually cancels changes done to other objects
that share the same Recorder.

Callback Methods
The Recorder will invoke the OnReplaying(ReplayKind, ReplayContext) and OnReplayed(ReplayKind, Replay-
Context) methods of any recordable object implementing the IRecordableCallback interface, whenever the object is
affected by an undo or redo operation.
The order in which these methods are ordered on several objects is non-deterministic; in particular, the aggregation
structure is not respected.
It is not allowed, from a callback methods:

• to perform a change that would be recorded, e.g. to set a field that has not been waived from recording with
the NotRecordedAttribute custom attributes.

• to invoke methods Undo, Redo or AddRestorePoint of the Recorder class.

Memory Consumption
The UndoOperations and RedoOperations collections hold strong references to all objects that have changes that can
be undone or redone. This means that these objects cannot be garbage-collected and will remain in memory.
You can define the maximal number of operations available for undo thanks to the RecorderMaximumOperationsCount
property.

Undo/Redo

156

CHAPTER 12

Contracts

Throwing exceptions upon detecting a bad or unexpected value is good programming practice called precondition checking.
However, writing the same checks over and over in different areas of the code base is tedious, error prone, and difficult to
maintain.
PostSharp Code Contracts have the following features and benefits:

• More readable. PostSharp Code Contracts are represented as custom attributes there is less code to read and
understand.

• Inherited. You can add a PostSharp Code Contract attribute to an interface method parameter and it will automat-
ically be enforced in all implementations of this method.

• Localizable. It's easy to display the error message in the user's language, even if you didn't design for this scenario
upfront.

In this chapter
Section Description
Walkthrough: Adding Contracts to Code on page 157 This section demonstrates how to add contracts to code

and how inheritance works.
Creating Custom Contracts on page 162 This section explains how to create your own contract

attributes.
Localizing Contract Errors on page 163 This section describes how to customize the texts of

exceptions that are thrown when a contract is violated.

12.1. Walkthrough: Adding Contracts to Code
This section describes how to add a contract to a field, property, or parameter.
This topic contains the following sections:

• Introduction on page 157
• Adding contracts using PostSharp Tools for Visual Studio on page 159
• Adding contracts manually on page 161
• Contract Inheritance on page 161

Introduction
Consider the following method which checks if a valid string has been passed in:

public class CustomerModel
{

public void SetFullName(string firstName, string lastName)

Walkthrough: Adding Contracts to Code

157

{
if(firstName == null)

throw NullReferenceException();

if(lastName == null)
throw NullReferenceException();

this.FullName = firstName + " " + lastName;
}

}

In this example, checks have been added to ensure that both parameters contain a valid string. A better solution is to
place the logic which performs this check into its own reusable class, especially such boilerplate logic is involved, and
then reuse/invoke this class whenever the check needs to be performed.
PostSharp’s Contract attributes do just that by moving such checks out of code and into parameter attributes. For
example, PostSharp’s RequiredAttribute contract could be used to simplify the example as follows:

public class CustomerModel
{

public void SetFullName([Required] string firstName, [Required] string lastName)
{

this.FullName = firstName + " " + lastName;
}

}

In this example the RequiredAttribute attribute performs the check for null, thus eliminating the need to write the
boiler plate code for the check inline with other code.
A contract can also be used in a property as shown in the following example:

public class CustomerModel
{

[Required]
public FirstName
{

get;
set;

}
}

Using a contract in a property ensures that the value being passed into set is validated before the logic (if any) for set is
executed.
Similarly, a contract can be used directly on a field which will validate the value being assigned to the field:

public class CustomerModel
{

[Required]
private string mFirstName = “Not filled in yet”;

public void SetFirstName(string firstName)
{

mFirstName = firstName;
}

}

In this example, firstName will be validated by the Required contract before being assigned to mFirstName. Placing a
contract on a field provides the added benefit of validating the field regardless of where it’s set from.
Note that PostSharp also includes a number of built-in contracts which range from checks for null values to testing for
valid phone numbers. You can also develop your own contracts with custom logic for your own types as described
below.
There are two ways to add contracts:

Contracts

158

Adding contracts using PostSharp Tools for Visual Studio
PostSharp’s Visual Studio integration provides a smart tag popup which can be used to select and apply a contract to a
parameter, field, or property.

To add contract using PostSharp Tools for Visual Studio:
1. Click on the parameter, field, or property for which the contract is to be applied. While hovering the mouse

over this item, a smart tag drop-down will appear:

2. Click on the smart tag drop-down to reveal the contracts available:

3. Select a contract from the list or select Add another aspect to display the aspect selection dialog:

4. Select a contract and click Next.

Walkthrough: Adding Contracts to Code

159

5. Confirm the addition of the contract and click Next:

6. Click Finish when the dialog indicates that the operation completed:

The aspect has now been added in code:

Contracts

160

Adding contracts manually
To add contract manually:

1. Add the PostSharp.Patterns.Model assembly to your project.

2. Add the namespace containing the code contacts you plan to use.
◦ add the PostSharp.Patterns.Contracts namespace if you plan to use the ready-made patterns,

and/or
◦ add the namespace which includes your custom contracts on page 162.

You can find a full list of available ready-made patterns in the documentation of the PostSharp.Patterns.
Contracts namespace.

3. Add the attribute before the parameter name. For example:

public void SetFullName([Required] string firstName, [Required] string lastName)

Contract Inheritance
PostSharp ensures that any contracts which have been applied to an abstract, virtual, or interface method are inherited
along with that method in derived classes, all without the need to re-specify the contract in the derived methods. This is
shown in the following example:

public interface ICustomerModel
{

void SetFullName([Required] string firstName, [Required] string lastName);
}

public class CustomerModel : ICustomerModel
{

public void SetFullName(string firstName, string lastName)
{

this.FullName = firstName + " " + lastName;
}

}

Here ICustomerModel.SetFullName method specifies that the firstName and lastName parameters are required using
the RequiredAttribute attribute. Since the CustomerModel.SetFullName method implements this method, these
attributes will also be applied to its parameters.

NOTE
If the derived class exists in a separate assembly, that assembly must be processed by PostSharp and must reference
PostSharp and PostSharp Model pattern assembly.

Walkthrough: Adding Contracts to Code

161

12.2. Creating Custom Contracts
Given the benefits that contracts provide over manually checking values and throwing exceptions in code, you will likely
want to implement your own contracts to perform your own custom checks and handle your own custom types.
The following steps show how to implement a contract which throws an exception if a numeric parameter is zero:

To implement a contract throwing an exception if a numeric parameter is zero:
1. Use the following namespaces: PostSharp.Aspects and PostSharp.Reflection.

2. Derive a class from LocationContractAttribute and override the GetErrorMessage method:

public class NonZeroAttribute : LocationContractAttribute
{

public const string ErrorMessage = "NonZeroErrorMessage";

public NonZeroAttribute()
: base()

{
}

protected override string GetErrorMessage()
{

return "Value {2} must have a non-zero value.";
}

}

NOTE
The value returned by GetErrorMessage method can contain formatting placeholders. See the remarks section
for the LocationContractAttribute class for more information.

Contracts

162

3. Implement the ILocationValidationAspect interface in the new contract class which exposes the Validate-
Value(T, String, LocationKind) method. Note that this interface must be implemented for each type that is to
be handled by the contract. In this example, the contract will handle both int and uint, so the interface is
implemented for both integer types. If additional integer types were to be handled by this class (e.g. long), then
additional implementations of ILocationValidationAspect would have to be added:

public class NonZeroAttribute : LocationContractAttribute, ILocationValidationAspect<int>, ILocationValidationAspect<uint>
{

public const string ErrorMessage = "NonZeroErrorMessage";

public NonZeroAttribute()
: base()

{
}

protected override string GetErrorMessage()
{

return "Value {2} must have a non-zero value.";
}

public Exception ValidateValue(int value, string name, LocationKind locationKind)
{

if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);

else
return null;

}

public Exception ValidateValue(uint value, string name, LocationKind locationKind)
{

if (value == 0)
return this.CreateArgumentOutOfRangeException(value, name, locationKind);

else
return null;

}
}

The ValidateValue(T, String, LocationKind) method takes in the value to test, the name of the parameter,
property or field, and the usage (i.e. whether it’s a parameter, property, or field). The method must return an
exception if a check fails, or null or if no exception is to be raised.

With the contract now created it can be used. For example, the following methods which calculate the modulus between
two numbers, can use the contract defined above to ensure that neither of their input parameters are zero:

bool Mod([NonZero] int number, [NonZero] int dividend)
{

return ((number % dividend) == 0);
}

bool Mod([NonZero] uint number, [NonZero] uint dividend)
{

return ((number % dividend) == 0);
}

12.3. Localizing Contract Errors
You can customize all texts of exceptions raised by built-in contract. This allows you to localize error messages into different
languages.

Localizing Contract Errors

163

Contracts use the ContractLocalizedTextProvider class to obtain the text of an error message. This class follows a simple
chain of responsibilities pattern where each provider has a reference to the next provider in the chain. When a message is
queried, the provider either returns a message or passes control to the next provider in the chain.
Each message is identified by a string identifier and can refer to 4 basic arguments and additional arguments specific to a
message type. For general information about message arguments please see remarks section of LocationContract-
Attribute. For identifier of a particular message and its additional arguments, please see remarks section of contract
classes in PostSharp.Patterns.Contracts.

This topic contains the following sections:
• Localizing a built-in error message on page 164
• Localizing custom contracts on page 165

Localizing a built-in error message
Following steps illustrate how to override an error message of a given contract:

To override a contract error message:
1. Declare a class that derives from ContractLocalizedTextProvider and implement the chain constructor.

public class CzechContractLocalizedTextProvider : ContractLocalizedTextProvider
{

public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
: base(next)

{
}

}

Contracts

164

2. Implement the GetMessage(String) method. In the next code snippet, we show how to build a simple and
efficient dictionary-based implementation.

public class CzechContractLocalizedTextProvider : ContractLocalizedTextProvider
{

private readonly Dictionary<string, string> messages = new Dictionary<string, string>
{

{RegularExpressionErrorMessage, "Hodnota {2} neodpovídá regulárnímu výrazu '{4}'."},
};

public CzechContractLocalizedTextProvider(ContractLocalizedTextProvider next)
: base(next)

{
}

public override string GetMessage(string messageId)
{

if (string.IsNullOrEmpty(messageId))
throw new ArgumentNullException("messageId");

string message;
if (this.messages.TryGetValue(messageId, out message))
{

return message;
}
else
{

// Fall back to the default provider.
return base.GetMessage(messageId);

}
}

}

NOTE
If you need to support several languages, you can make your implementation of the GetMessage(String)
method dependent on the value of the CultureInfoCurrentCulture property. You can optionally store your
error messages in a managed resource and use the ResourceManager class to access it and manage
localization issues. The design of PostSharp Code Contracts is agnostic to these decisions.

3. In the beginning of an application, create a new instance of the provider and set the current provider as it's
successor.

public static void Main()
{

ContractLocalizedTextProvider.Current = new CzechContractLocalizedTextProvider(ContractLocalizedTextProvider.Current);

// ...
}

Localizing custom contracts
Once you have configured a text provider, you can use it to localize error messages of custom contracts. In the following
procedure, we will localize the error message of the example contract described in Creating Custom
Contracts on page 162.

Localizing Contract Errors

165

To localize a custom contract:
1. Edit the code contract class (NonZeroAttribute in our case) and replace the implementation of the GetError-

Message method by a call to the GetMessage(String) method. Pass a unique message identifier to this
method.

protected override string GetErrorMessage()
{

return ContractLocalizedTextProvider.Current.GetMessage("NonZeroErrorMessage");
}

2. Edit your implementation of the LocalizedTextProvider class and include the message for your custom
contract:

private readonly Dictionary<string, string> messages = new Dictionary<string, string>
{

{RegularExpressionErrorMessage, "Hodnota {2} neodpovídá regulárnímu výrazu '{4}'."},
{"NonZeroErrorMessage", "Value {2} must have a non-zero value."}

};

Contracts

166

CHAPTER 13

Logging

The Diagnostics Pattern Library enables you to configure where logging should be performed and to keep your log entries
in sync as you add, remove and refactor your codebase. Currently, the library provides a single aspect: LogAttribute.

In this chapter
Section Description
Walkthrough: Adding Detailed Tracing to a Code
Base on page 167

This article shows how to add detailed logging to your
application.

Walkthrough: Tracing Parameter Values Upon
Exception on page 177

This article describes how to log parameter values when a
method fails with an exception.

Walkthrough: Customizing Logging on page 171 This article shows how to customize the logging settings,
such as the severity level or whether parameter values
should be included.

Walkthrough: Changing the Logging Back-
End on page 182

This article shows how to switch to a different back-end
after you have chosen a first one.

13.1. Walkthrough: Adding Detailed Tracing to a Code Base
When you're working with your codebase it's common to need to add logging either as a non-functional requirement or
simply to assist during the development process. In either situation you will want to include information about the
parameters passed to the method when it was called as well as the parameter values once the method call has completed.
This can be a tedious and brittle process. As you work and refactor methods the order and types of parameters may
change, parameters may be added and some maybe removed. Along with performing these refactorings you have to
remember to update the logging messages to keep them in sync. This is something that is easy to forget and once
forgotten the output of the logging is much less useful.
PostSharp offers a solution to all of these problems. The logging pattern library allows you to configure where logging
should be performed and the pattern library takes over the task of keeping your log entries in sync as you add, remove and
refactor your codebase. Let's take a look at how you can add trace logging for the start and completion of method calls.

NOTE
This procedure requires PostSharp Tools for Visual Studio21 to be installed on your machine. You can however achieve the
same results by editing the code and the project manually.

21. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Walkthrough: Adding Detailed Tracing to a Code Base

167

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

To add trace logging for the start and completion of method calls:
1. Let's add logging to our Save method.

public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

2. Put the caret on the Save method name and expand the Smart Tag. From the list select "Add logging".

3. The first option that you need to select is the Logging Profile. For this example we will take the default provided: it
logs the method enters and exits, and includes parameter values and return value. Select the "Default" profile and
click Next.

Logging

168

4. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

5. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

Walkthrough: Adding Detailed Tracing to a Code Base

169

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from NuGet and added as references to your codebase.

7. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you
can close the wizard and look at the changes that were made to your codebase.

Logging

170

8. You'll notice that the code you added the logging to has changed slightly. PostSharp has added a LogAttribute
attribute to the method. Since we chose the default logging profile, there is no argument to the LogAttribute
attribute.

[Log]
public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

NOTE
This example has added a single attribute to one method. If you plan on adding this logging to many different
locations in your codebase you will want to read about using the MulticastAttribute: Adding Aspects to Multiple
Declarations on page 187.

9. If you were to run this method the trace logging that you added would output a log message when entering the
method and an entry when leaving the method. Note that the parameter values are automatically included in the
log message.

Now that you have logging added to the Save method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes. In
combination with attribute multicasting (the article Adding Aspects to Multiple Declarations on page 187), adding logging
to your codebase and maintaining it becomes a very easy task.

13.2. Walkthrough: Customizing Logging
When adding logging to your codebase, you may need to set up logging options differently for different areas or layers in
your application. For example, exceptions in the service that cleans up old data in the database can be logged with a
"Warning" level, while exceptions in the customer-facing web service must be logged with the "Error" level.
PostSharp enables you to organize your logging options using Logging Profiles. Logging profiles are stored in the solution-
wide configuration file, and each profile specifies what information you want to be included in the log output. You apply a
given logging profile by providing its name as an argument for the LogAttribute attribute's constructor. Let's take a look
at how you can create your own logging profile and use it in your code.

Walkthrough: Customizing Logging

171

NOTE
This procedure requires PostSharp Tools for Visual Studio22 to be installed on your machine. You can however achieve the
same results by editing the code and the project manually.

To create a custom logging profile:
1. Let's add customized logging to our Save method.

public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

2. Put the caret on the Save method name and expand the Smart Tag. From the list select "Add logging".

3. The first page of the wizard is the logging profile selection dialogue. In this dialogue you can select one of the
predefined profiles, edit an existing profile or create a new one. For this example click on the "New logging
profile..." link to create a new logging profile.

22. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Logging

172

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

4. Provide a name for your newly created logging profile in the opened profile customization dialogue.

5. Choose when to write a new message to the log. You can select from one of these options: when entering and
exiting the method, only when entering the method, only when exception is thrown inside the method.

6. Choose what information to include in each log message. The available options are: parameter values, names, and
types, and return value of the method.

7. Finally, select the logging level to use for the exception log messages.
8. When you're done with customizing your new logging profile, click Save button.

Walkthrough: Customizing Logging

173

9. Back in the profile selection dialogue select your profile and click Next.

10. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

Logging

174

11. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

12. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from NuGet and added as references to your codebase.

Walkthrough: Customizing Logging

175

13. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you
can close the wizard and look at the changes that were made to your codebase.

14. First of all, the code window with SolutionName.pssln file will be shown. This file stores all your custom logging
profiles and other solution-level information.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:d="clr-namespace:PostSharp.Patterns.Diagnostics;assembly:PostSharp.Patterns.Diagnostics"xmlns:p="http://schemas.postsharp.org/1.0/configuration">

<PropertyName="LoggingEnabled"Value="{has-plugin('PostSharp.Patterns.Diagnostics')}"Deferred="true"/>
<d:LoggingProfilesp:Condition="{$LoggingEnabled}">

<d:LoggingProfileName="New profile"OnEntryOptions="IncludeParameterValue | IncludeReturnValue | IncludeThisArgument"OnExceptionLevel="None"OnSuccessLevel="None"/>
</d:LoggingProfiles>

</Project>

15. You'll also notice that the code you added the logging to has changed slightly. PostSharp has added a Log-
Attribute attribute to the method and the attribute has the name of your logging profile specified as an
argument.

[Log("New profile")]
public void Save(string firstName, string lastName, string streetAddress, string city)
{

var customerRepository = new CustomerRepository();
customerRepository.Save(firstName, lastName, streetAddress, city);

}

NOTE
This example has added a single attribute to one method. If you plan on adding this logging to many different
locations in your codebase you will want to read about using the MulticastAttribute: Adding Aspects to Multiple
Declarations on page 187.

Logging

176

16. If you were to run this method the trace logging that you added would output a log message according to the
options you've specified in your logging profile.

Now that you have logging added to the Save method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes. In
combination with attribute multicasting (the article Adding Aspects to Multiple Declarations on page 187), adding logging
to your codebase and maintaining it becomes a very easy task.

13.3. Walkthrough: Tracing Parameter Values Upon Exception
When you're working with your codebase it's common to need to add logging of exceptions either as a non-functional
requirement or simply to assist during the development process. In either situation you will want to include information
about the parameters that were passed to the method where the exception is being caught and logged. This can be a
tedious and brittle process. As you work and refactor methods the order and types of parameters may change, parameters
may be added and some maybe removed. Along with performing these refactorings you have to remember to update the
exception logging messages to keep them in sync. This is something that is easy to forget and once forgotten the output of
the logging is much less useful.
PostSharp offers a solution to all of these problems. The logging pattern library allows you to configure where logging
should be performed and the pattern library takes over the task of keeping your log entries in sync as you add, remove and
refactor your codebase. Let's take a look at how you can add trace logging of exceptions that includes the parameter values
that were passed to the method that is being logged.

NOTE
This procedure requires PostSharp Tools for Visual Studio23 to be installed on your machine. You can however achieve the
same results by editing the code and the project manually.

23. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Walkthrough: Tracing Parameter Values Upon Exception

177

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

To add trace logging of exceptions that includes the parameter values:
1. Let's add logging to our DoStuff method.

public void DoStuff(int i, int x)
{

Console.WriteLine(i/x);
}

2. Put the caret on the DoStuff method name and expand the Smart Tag. From the list select "Add logging".

3. The first option that you need to select is the Logging Profile. Here we want to choose the "Exceptions" profile
and accept its default values. Click Next.

Logging

178

4. The next page of the wizard gives you the opportunity to choose the logging back-end that you want to use. For
this example select "System.Diagnostics.Trace" and click Next.

5. The summary page gives you the opportunity to review the selections that you have made. If you notice that the
configuration is not what you wanted you can click the Previous button and adjust your selections. If the configu-
ration meets your needs click Next.

Walkthrough: Tracing Parameter Values Upon Exception

179

6. The progress page shows a progress bar and summary of what actions PostSharp is taking to add the selected
logging configuration to your codebase. It's at this point that PostSharp and the logging pattern library will be
downloaded from Nuget and added as references to your codebase.

7. Once the download, installation and configuration of PostSharp and the logging pattern library has finished you
can close the wizard and look at the changes that were made to your codebase.

Logging

180

8. You'll notice that the code you added the logging to has changed slightly - PostSharp has added a Log-
ExceptionAttribute attribute to the method.

[LogException]
public void DoStuff(int i, int x)
{

Console.WriteLine(i/x);
}

NOTE
This example has added a single attribute to one method. If you plan on adding this logging to many different
locations in your codebase you will want to read about using attribute multicasting. See Adding Aspects Declara-
tively Using Attributes on page 186.

9. If you were to run this method from a console application and pass in a value of zero for the second parameter it
would generate a DivideByZeroException. The trace logging that you added would output a log message plus
the exception's stack trace to the console. Note that the parameter values are automatically included in the log
message.

10. For those of you interested in what is happening behind the scenes we can decompile the method and observe
what PostSharp has done to our codebase. You'll notice two significant things when you look at the decompiled
code. First, PostSharp added in a try...catch block that wraps the entirety of the original methods contents. The
second thing you'll notice is that the catch block logs the exception and re-throws it. This ensures that your code
execution paths will remain unchanged after you've added the logging.

Now that you have logging added to the DoStuff method you are able to change the method's name as well as add and
remove parameters with the confidence that your log entries will be kept in sync with each of those changes. In
combination with the attribute multicasting (See the section Adding Aspects Declaratively Using Attributes on page 186),
adding logging to your codebase and maintaining it becomes a very easy task.

Walkthrough: Tracing Parameter Values Upon Exception

181

13.4. Walkthrough: Changing the Logging Back-End
This section describes how to change the logging back-end for a project or solution.
This topic contains the following sections:

• Changing the logging back-end when using NuGet on page 182
• Changing the logging back-end when not using NuGet on page 183

The following table shows identifiers of the back-ends and the NuGet packages in which they are implemented. You will
need this table in both scenarios.

Name NuGet Package Description
Console PostSharp.Patterns.Diagnostics Logging using ConsoleWriteLine(String)

Trace PostSharp.Patterns.Diagnostics Logging using Trace

Log4Net PostSharp.Patterns.Diagnostics.Log4Net Apache log4net24

NLog PostSharp.Patterns.Diagnostics.NLog NLog Project25

EnterpriseLibrary PostSharp.Patterns.Diagnostics.EnterpriseLibrary Logging Application Block26

Changing the logging back-end when using NuGet
When using the NuGet distribution of PostSharp, the Diagnostics Pattern Library comes as the PostSharp.Patterns.
Diagnostics NuGet package, which contains common functionality and implements some of the back-ends. Other back-
ends may require additional NuGet packages. The details are provided in the table above.

To change the logging back-end when using NuGet:
1. Remove the NuGet package containing the previous back-end implementation, if any.

NOTE
The PostSharp.Patterns.Diagnostics NuGet package should always remain installed as long as you use any of
the logging back-ends. This package contains the common logging functionality.

2. Remove the libraries NuGet package of the previous back-end if any and if you'll not use the libraries in your
project outside of PostSharp.

3. Add the NuGet package containing the new back-end implementation, if the implementation is not contained
in the PostSharp.Patterns.Diagnostics NuGet package already.

NOTE
If any other NuGet package is required by the back-end, it will be installed automatically by the NuGet
Package Manager.

24. https://logging.apache.org/log4net/
25. http://nlog-project.org/
26. https://msdn.microsoft.com/en-us/library/ff664569(v=pandp.50).aspx

Logging

182

https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.Log4Net/
https://logging.apache.org/log4net/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.NLog/
http://nlog-project.org/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics.EnterpriseLibrary/
https://msdn.microsoft.com/en-us/library/ff664569(v=pandp.50).aspx
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://www.nuget.org/packages/PostSharp.Patterns.Diagnostics/
https://logging.apache.org/log4net/
http://nlog-project.org/
https://msdn.microsoft.com/en-us/library/ff664569(v=pandp.50).aspx

4. Set the LoggingBackend property in the PostSharp project file (MyProject.psproj) to the name of the new
logging back-end. Below is an example of PostSharp project file with the LoggingBackend set to "Trace".

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"OverridesDefaultProject="false">

<PropertyName="LoggingBackend"Value="Trace"/>
</Project>

Changing the logging back-end when not using NuGet
When using a non-NuGet distribution of PostSharp, all the PostSharp plug-ins are contained in the distribution.

To change the logging back-end when not using NuGet:
1. If you'll not use the back-end in your project outside of PostSharp, you can remove the assembly references

and configuration from your project.
2. Add the relevant assembly references and configuration of the new backend to your project. See the

documentation of the back-end. Links are provided in the table above.
3. Set the LoggingBackend property in the PostSharp project file (MyProject.psproj) to the name of the new

logging back-end. Below is an example of PostSharp project file with the LoggingBackend set to "Trace".

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"OverridesDefaultProject="false">

<PropertyName="LoggingBackend"Value="Trace"/>
</Project>

Walkthrough: Changing the Logging Back-End

183

Logging

184

CHAPTER 14

Adding Aspects to Code

An aspect has no effect until it is applied to some element of code. PostSharp provides multiple ways to add aspects to
your code.

Applying Aspects to Multiple Elements of Code Declaratively
In many situations, you want to apply the same aspect to many elements of code. For instance, you may need to add
tracing or performance monitoring to all public methods of a namespace. Since there may be hundreds of affected
methods, you don't want to add a custom attribute to all of them.
Thanks to an extension of semantics of custom attributes named “multicast custom attribute” (MulticastAttribute), it
is easy to apply an aspect to multiple elements of code using a single line of code.
For details, see Adding Aspects Declaratively Using Attributes on page 186 and Understanding Aspect
Inheritance on page 200.

Applying Aspects to Multiple Elements of Code Imperatively
If declarative features of MulticastAttribute are not sufficient for your case, you can select elements of code impera-
tively. For instance, you can develop complex filters based on System.Reflection or read information from an XML file.

There are two ways you can implement imperative selection aspect targets:

Filtering Out Using CompileTimeValidate
To filter out elements of codes that have been selected by MulticastAttribute, you can implement the method
CompileTimeValidate(Object) of your aspect and silently return false if the candidate target is not appropriate. .

For instance, the following aspect will apply only on security-critical methods.

using System;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Serialization;

namespace Samples2
{

[PSerializable]
public sealed class TraceSecurityCriticalAttribute : OnMethodBoundaryAspect
{

// Select only security-critical methods.
public override bool CompileTimeValidate(MethodBase method)
{

return method.IsSecurityCritical;
}

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("On Entry");
}

}
}

See Validating Aspect Usage on page 307 for details.

Walkthrough: Changing the Logging Back-End

185

Adding Aspect Instances Using IAspectProvider
If you have to implement more complex rules to select the target of aspects, you can create another aspect that will do
nothing else than adding aspect instances to your code. This aspect must implement the interface IAspectProvider
and will typically derive from AssemblyLevelAspect or TypeLevelAspect.

TIP
Use ReflectionSearch to perform complex queries over System.Reflection.

14.1. Adding Aspects Declaratively Using Attributes
In .NET, you normally need to write one line of code for any application of a target attribute. If a custom attribute applies to
all types of a namespace, you have to manually add the custom attribute to every single type.
By contrast, multicast custom attributes allow you to apply a custom attribute on multiple declarations from a single line of
code by using wildcards or regular expressions, or by filtering on some attributes. It makes it easy to apply an aspect to, say,
all public static methods of a namespace, with a single line of code.
Multicast attributes can be inherited: you can put it on an interface and ask it to apply to all classes implementing this
interface. Attribute inheritance also works for classes, virtual or interface methods, and parameters of virtual or interface
methods.
Custom attributes supporting multicasting needs to be derived from MulticastAttribute. All PostSharp aspects and
constraints are derived from this class.

NOTE
Multicasting of custom attribute is a feature of PostSharp. If you do not transform your assembly using PostSharp,
multicast attributes will behave as plain old custom attributes.

NOTE
This documentation often refers to this as “aspect” multicasting and inheritance. This is not totally accurate. Although this
feature has been developed to support aspects, you can use it for your own custom attributes, even if they are not
aspects. To use multicasting and inheritance for custom attributes that are not aspects, simply derive the attribute class
from MulticastAttribute instead of Attribute.

Attribute multicasting supports the following scenarios:
• Adding Aspects to a Single Declaration on page 187
• Adding Aspects to Multiple Declarations on page 187
• Adding Aspects to Derived Classes and Methods on page 189
• Overriding and Removing Aspect Instances on page 194
• Reflecting Aspect Instances at Runtime on page 197

For a conceptual overview of this feature, see:.
• Understanding Attribute Multicasting on page 198

Adding Aspects to Code

186

• Understanding Aspect Inheritance on page 200

14.1.1. Adding Aspects to a Single Declaration
Aspects in PostSharp are plain custom attributes. You can apply them to any element of code as usually.
In the following example, the Trace aspect is applied to two methods.

public class CustomerService
{

[Trace]
public Custom GetCustomer(int customerId)
{

// Details skipped.
}

[Trace]
public void MergeCustomers(Customer customer1, Customer customer2);
{

// Details skipped.
}

}

14.1.2. Adding Aspects to Multiple Declarations
Once have written an aspect we have to apply it to the application code so that it will be used. There are a number of ways
to do this so let's take a look at one of them: custom attribute multicasting. Other ways include XML Multicasting (see the
section Adding Aspects Using XML on page 202) and dynamic aspect providers (see more in the section Adding Aspects
Programmatically using IAspectProvider on page 203).
This topic contains the following sections:

• Applying to all members of a class on page 187
• Applying an aspect to all types in a namespace on page 187
• Excluding an aspect from some members on page 188
• Filtering by class visibility on page 188
• Filtering by method modifiers on page 189
• Programmatic filtering on page 189

Applying to all members of a class
When we are trying to apply a method level aspect we can place an attribute to each of the methods.

[OurLoggingAspect]
public class CustomerServices

As our codebase grows this approach becomes tedious. We need to remember to add the attribute to all of the
methods on the class. If you have hundreds of classes, you may have thousands of methods you need to manually add
the aspect attribute to. It's an unsustainable proposition. Thankfully, there is a way to make this easier. Instead of
applying your aspect on each method you can add that attribute to the class and PostSharp will ensure that the aspect
is applied to all of the methods on that class.

Applying an aspect to all types in a namespace
Even though we don't have to apply an aspect to all methods in all classes in our application, adding the aspect
attribute to every class could still be an overwhelming task. If we want to apply our aspect in a broad stroke we can
make use of PostSharp's MulticastAttribute.

Adding Aspects Declaratively Using Attributes

187

The MulticastAttribute is a special attribute that will apply other attributes throughout your codebase. Here's how we
would use it.

1. Open the AssemblyInfo.cs, or create a new file GlobalAspects.cs if you prefer to keep things separate (the
name of this file does not matter).

2. Add an [assembly:] attribute that references the aspect you want applied.

3. Add the AttributeTargetTypes property to the aspects's constructor and define the namespace that you
would like the aspect applied to.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*")]

This one line of code is the equivalent of adding the aspect attribute to every class in the desired namespace.

NOTE
When setting the AttributeTargetTypes you can use wildcards (*) to indicate that all sub-namespaces should have
the aspect applied to them. It is also possible to indicate the targets of the aspect using regex. Add "regex:" as a
prefix to the pattern you wish to use for matching.

Excluding an aspect from some members
Multicasting an attribute can apply the aspect with a very broad brush. It is possible to use AttributeExclude to restrict
where the aspect is attached.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributePriority = 1)]
[assembly: OurLoggingAsepct(AttributeTargetMembers="Dispose", AttributeExclude = true, AttributePriority = 2)]

In the example above, the first multicast line indicates that the OurLoggingAspect should be attached to all methods in
the Controllers namespace. The second multicast line indicates that the OurLoggingAspect should not be applied to
any method named Dispose.

NOTE
Notice the AttributePriority property that is set in both of the multicast lines. Since there is no guarantee that the
compiler will apply the attributes in the order you have specified in the code, it is necessary to declare an order to
ensure processing is completed as desired.
In this case, the OurLoggingAspect will be applied to all methods in the Controllers namespace first. After that is
completed, the second multicast of OurLoggingAspect is performed which then excludes the aspect from methods
named Dispose.

See Overriding and Removing Aspect Instances on page 194 for more details about excluding and overriding aspects.

Filtering by class visibility
Now that you've been able to apply our aspect to all classes in a namespace and its sub-namespaces, you may be faced
with the need to restrict that broad stroke. For example, you may want to apply your aspect only to classes defined as
being public.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

Adding Aspects to Code

188

2. Set the AttributeTargetTypeAttributes value to Public.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*",
AttributeTargetTypeAttributes = MulticastAttributes.Public)]

By combining AttributeTargetTypeAttributes values you are able to create many combinations that are appropriate
for your needs.

NOTE
When specifying attributes of target members or types, do not forget to provide all categories of flags, not only the
category on which you want to put a restriction.

Filtering by method modifiers
Filtering at a class level may not be granular enough for your needs. Aspects can be attached at the method level and
you will want to control filtering on these aspects as well. Let's look at an example of how to apply aspects only to
methods marked as virtual.

1. Add the AttributeTargetTypeAttributes property to the MulticastAttribute's constructor.

2. Set the AttributeTargetTypeAttributes value to VirtualVirtual.

[assembly: OurLoggingAspect(AttributeTargetTypes="OurCompany.OurApplication.Controllers.*", AttributeTargetMemberAttributes = MulticastAttributes.Virtual)]

Using this technique you can apply a method level aspect, or stop it from being applied, based on the existence or non-
existence of things like the static, abstract, and virtual keywords.

Programmatic filtering
There are situations where you will want to filter in a way that isn't based on class or method declarations. You may
want to apply an aspect only if a class inherits from a specific class or implements a certain interface. There needs to be
a way for you to accomplish this.
The easiest way is to override the CompileTimeValidate(Object) method of your aspect class, where you can perform
your custom filtering. This is the opt-out approach. Have the CompileTimeValidate(Object) method return false
without emitting any error, and the candidate target will be ignored. See the section Validating Aspect
Usage on page 307 for details.
The second approach is opt-in. See the section Adding Aspects Programmatically using IAspectProvider on page 203 for
details.

14.1.3. Adding Aspects to Derived Classes and Methods
By default, aspects apply to the class or class member which your attribute has been applied to. However, PostSharp
provides the ability to specify aspect inheritance which can allow your attributes to be inherited in derived classes. This
feature, named aspect inheritance can be specified on types, methods, and parameters, but not on properties or events.

NOTE
PostSharp Professional or higher edition is required for aspect inheritance.

Adding Aspects Declaratively Using Attributes

189

This topic contains the following sections:
• Applying aspects to derived types on page 190
• Setting inheritance on a per-usage basis on page 190
• Applying aspects to overridden methods on page 191
• Applying aspects to new methods of derived types on page 193

Applying aspects to derived types
One way to implement aspect inheritance is to add a MulticastAttributeUsageAttribute custom attribute to your
aspect class. Aspects that apply to types are typically derived from TypeLevelAspect or InstanceLevelAspect.

The benefit of this approach is that the aspect will be automatically applied to all derived classes, eliminating the need
to manually setup attributes in the derived classes. Moreover, this logic lives in one place.
The following steps describe how to enable aspect inheritance on existing aspect, derived from TypeLevelAspect, which
applies a DataContractAttribute attribute to the base and all derived classes, and a DataMemberAttribute attribute to
all properties of the base class and those of derived classes:

How to enable aspect inheritance on existing aspect:
1. Create a TypeLevelAspect which implements IAspectProvider.

2. Decorate AutoDataContractAttribute with the MulticastAttribute, and set the Inheritance to Strict.
Note that MulticastInheritance.Strict and MulticastInheritance.Multicast have the same effect when
applied to type-level aspects.

[MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[PSerializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

3. Decorate your base class with AutoDataContractAttribute. The following snippet shows a base customer
class and a derived customer class:

[AutoDataContractAttribute]
class Document
{

public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

}

class MultiPageArticle : Document
{

public List<ArticlePage> Pages { get; set; }
}

When the attribute is applied to the base class, the DataContractAttribute and DataMemberAttribute attributes will
be applied at compile time to both classes. If other derived classes were added, then these would be decorated
automatically as well.

Setting inheritance on a per-usage basis
Specifying targets and attribute inheritance can also be done on a per-usage basis rather that hard-coding it into the
custom attribute. In the following snippet, we’ve removed the MulticastAttributeUsageAttribute attribute from
AutoDataContractAttribute:

// [MulticastAttributeUsage(Inheritance = MulticastInheritance.Strict)]
[PSerializable]

Adding Aspects to Code

190

public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.
}

Now the inheritance mode can be specified directly on the AutoDataContractAttribute instance by setting the
AttributeInheritance property as shown here:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// Details skipped.
}

Applying aspects to overridden methods
The following example shows a custom attribute which when applied to a class, writes a message to the console window
whenever a method enters and exits:

[PSerializable]
public sealed class TraceMethodAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Entering {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

public override void OnExit(MethodExecutionArgs args)
{

Console.WriteLine(string.Format("Leaving {0}.{1}.", args.Method.DeclaringType.Name, args.Method.Name));
}

}

Specifying inheritance is simply a matter of adding the MulticastAttributeUsageAttribute attribute and specifying
the inheritance type, or to set the AttributeInheritance property on the custom attribute usage.

In the snippet below, we have added the TraceMethod aspect to a virtual method and used the AttributeInheritance
property to require the aspect to be automatically applied to all overriding methods:

class Document
{

// Details skipped.

// This method will be traced.
[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)

Adding Aspects Declaratively Using Attributes

191

{
html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

In this example, TraceMethodAttribute will output entry and exit messages for Document.RenderHtml method and
MultiPageArcticle.RenderHtml method as shown here:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

NOTE
Aspect inheritance works with virtual, abstract and interface methods and their parameters.

We would get the similar result by adding the TraceMethod attribute to the Document class. Indeed, by virtue of
attribute multicasting (see section Adding Aspects to Multiple Declarations on page 187 for more details), adding a
method-level attribute to a class implicitly adds it to all method of this class.

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Strict)]
class Document
{

// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will NOT be traced.
public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will NOT be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

Adding Aspects to Code

192

}

However, by adding the TraceMethod aspect to all methods of the Document type, we added it to property getters and
setters, influencing the output:

Entering MultiPageArcticle.RenderHtml
Entering Document.RenderHtml
Entering Document.get_Title
Leaving Document.get_Title
Entering Document.get_Author
Leaving Document.get_Author
Leaving Document.RenderHtml
Leaving MultiPageArcticle.RenderHtml

Applying aspects to new methods of derived types
In the previous section the TraceMethod attribute used Strict inheritance which means that if the base class is decorated
with the attribute, it will only be applied to methods which are declared in the base class and overridden in the derived
class.
By changing the inheritance mode to Multicast, we specify that the aspect should be also be applied to new methods
of the derived class, i.e. not only methods that are overridden from the base class.
In the following snippet we’ve changed inheritance from Strict to Multicast:

[TraceMethodAttribute(AttributeInheritance = MulticastInheritance.Multicast)]
class Document
{

// All property getters and setters will be traced.
public string Title { get; set; }
public string Author { get; set; }
public DateTime PublishedOn { get; set; }

// This method will be traced.
public virtual void RenderHtml(StringBuilder html)
{

html.AppendLine(this.Title);
html.AppendLine(this.Author);

}
}

class MultiPageArticle: Document
{

// Property getters and setters will ALSO be traced.
public List<ArticlePage> Pages { get; set; }

// This method will be traced.
public override void RenderHtml(StringBuilder html)
{

base.RenderHtml(html);
foreach (ArticlePage page in this.Pages)
{

page.RenderHtml(html);
}

}

// This method will ALSO be traced.
public void RenderHtmlPage(StringBuilder html, int pageIndex)
{

html.AppendFormat (“{0}, page {1}”, this.Title, pageIndex+1);
html.AppendLine();
html.AppendLine(this.Author);

}

}

Adding Aspects Declaratively Using Attributes

193

With Strict inheritance in use, TraceMethodAttribute applied to Document was not applied to the RenderHtmlPage
method and the Pages property. In other words, as the name suggests, Strict inheritance is strictly applying the attribute
on base members and any derived members which are inherited. However, with Multicast inheritance, the aspect is also
applied to the RenderHtmlPage method and the Pages property.

Strict inheritance evaluates multicasting and then inheritance, but Multicast inheritance evaluates inheritance and then
multicasting.

14.1.4. Overriding and Removing Aspect Instances
Having multiple instances of the same aspect on the same element of code is sometimes a desired behavior. With
multicasting custom attributes (MulticastAttribute), it is easy to end up with that situation. Indeed, many multicasting
paths can lead to the same target.
However, most of the time, a different behavior is preferred. We could define a method-level aspect on the type (this aspect
would apply to all methods) and override (or even exclude) the aspect on a specific method.
The multicasting engine has both the ability to apply multiple aspect instances on the same target, and the ability to
replace or remove custom attributes.

Understanding the Multicasting Algorithm
Before going ahead, it is important to understand the multicasting algorithm. The algorithm relies on a notion of order
of processing of aspect instances.

IMPORTANT NOTE
This section covers how PostSharp handles multiple instances of the same aspect type for the sole purpose of
computing how aspect instances should be overridden or removed. See Coping with Several Aspects on the Same
Target on page 321 to understand how to cope with multiple instances of different aspects.

The following rules apply:
1. Aspect instances defined on a container (for instance a type) have always precedence over instances defined

on an item of that container (for instance a method). Elements of code are processed in the following order:
assembly, module, type, field, property, event, method, parameter.

2. When multiple aspect instances are defined on the same level, they are sorted by increasing of value of the
AttributePriority.

The algorithm builds a list of aspect instances applied (directly and indirectly) on an element of code, sorts these
instances, and processes overrides or removals as described below.

Applying Multiple Instances of the Same Aspect
The property MulticastAttributeUsageAttributeAllowMultiple determines whether multiple instances of the same
aspect are allowed on an element of code. By default, this property is set to true for all aspects.

In the following example, the methods in type MyClass are enhanced by one, two and three instances of the Trace
aspect (see code comments).

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

Adding Aspects to Code

194

using Samples3;

[assembly: Trace(AttributeTargetTypes = "Samples3.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples3.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples3
{

[PSerializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspects with Category set to A, B
public void Method2()
{
}

// This method will have 3 Trace aspects with Category set to A, B, C.
[Trace(Category = "C")]
public void Method3()
{
}

}
}

Overriding an Aspect Instance Manually
You can require an aspect instance to override any previous one by setting the aspect property AttributeReplace. This
is equivalent to a deletion followed by an insertion (see below).
In the following examples, the first two methods of type MyClass are enhanced by aspects applied on assembly level,
but these aspects are replaced by a different one on Method3.

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;
using Samples5;

[assembly: Trace(AttributeTargetTypes = "Samples5.My*", Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples5.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, Category = "B")]

namespace Samples5
{

[PSerializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +

Adding Aspects Declaratively Using Attributes

195

args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);
}

}

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 2 Trace aspect with Category set to A, B.
public void Method2()
{
}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C", AttributeReplace = true)]
public void Method3()
{
}

}
}

Overriding an Aspect Instance Automatically
To cause a new aspect instance to automatically override any previous one, the aspect developer must disallow multiple
instances by annotating the aspect class with the custom attribute MulticastAttributeUsageAttribute and setting the
property AllowMultiple to false.

In the following example, the methods in type MyClass are enhanced by a single Trace aspect:

using System;
using System.Diagnostics;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;
using Samples4;

[assembly: Trace(AttributeTargetTypes = "Samples4.My*", AttributePriority = 1, Category = "A")]
[assembly: Trace(AttributeTargetTypes = "Samples4.My*",

AttributeTargetMemberAttributes = MulticastAttributes.Public, AttributePriority = 2, Category = "B")]

namespace Samples4
{

[MulticastAttributeUsage(MulticastTargets.Method, AllowMultiple = false)]
[PSerializable]
public sealed class TraceAttribute : OnMethodBoundaryAspect
{

public string Category { get; set; }

public override void OnEntry(MethodExecutionArgs args)
{

Trace.WriteLine("Entering " +
args.Method.DeclaringType.FullName + "." + args.Method.Name, this.Category);

}
}

public class MyClass
{

// This method will have 1 Trace aspect with Category set to A.
private void Method1()
{
}

// This method will have 1 Trace aspects with Category set to B.
public void Method2()
{

Adding Aspects to Code

196

}

// This method will have 1 Trace aspects with Category set to C.
[Trace(Category = "C")]
public void Method3()
{
}

}
}

Deleting an Aspect Instance
The MulticastAttributeAttributeExclude property removes any previous instance of the same aspect on a target.

This is useful, for instance, when you need to exclude a target from the matching set of a wildcard expression. For
instance:

[assembly: Configurable(AttributeTypes = "BusinessLayer.*")]

namespace BusinessLayer
{

[Configurable(AttributeExclude = true)]
public static class Helpers
{

}
}

14.1.5. Reflecting Aspect Instances at Runtime
Attribute multicasting has been primarily designed as a mechanism to add aspects to a program. Most of the time, the
custom attribute representing an aspect can be removed after the aspect has been applied.
By default, if you add an aspect to a program and look at the resulting program using a disassembler or System.
Reflection, you will not find these corresponding custom attributes.

If you need your aspect (or any other multicast attribute) to be reflected by System.Reflection or any other tool, you have
to set the MulticastAttributeUsageAttributePersistMetaData property to true.

For instance:

[MulticastAttributeUsage(MulticastTargets.Class, PersistMetaData = true)]
public class TagAttribute : MulticastAttribute
{

public string Tag;
}

NOTE
Multicasting of attributes is not limited only to PostSharp aspects. You can multicast any custom attribute in your
codebase in the same way as shown here. If a custom attribute is multicast with the PersistMetaData property set to
true, when reflected on the compiled code will look as if you had manually added the custom attribute in all of the
locations.

Adding Aspects Declaratively Using Attributes

197

14.1.6. Understanding Attribute Multicasting
This topic contains the following sections:

• Overview of the Multicasting Algorithm
• Filtering Target Elements of Code
• Filtering Properties
• Overriding Filtering Attributes

Overview of the Multicasting Algorithm
Every multicast attribute class must be assigned a set of legitimate targets using the MulticastAttributeUsage-
Attribute custom attribute, which is the equivalent and complement of AttributeUsageAttribute for multicast
attributes. Multicast attributes can be applied to types, methods, fields, properties, events, or/or parameters. For
instance, a caching aspect targets methods. A field validation aspect targets fields.
When a field-level multicast attribute is applied to a type, the attribute is implicitly applied to all fields of that type.
When it is applied on an assembly, it is implicitly applied to all fields of that assembly.
The general rule is: when a multicast attribute is applied on a container, it is implicitly (and recursively) applied to all
elements of that container.
The next table illustrates how this rule translates for different kinds of targets.

Directly applied to Implicitly applied to
Assembly or Module Types, methods, fields, properties, parameters, and events contained in this assembly or module.
Type Methods, fields, properties, parameters, and events contained in this type.
Property or Event Accessors of this property or event.
Method This method and the parameters of this method.
Field This field.
Parameter This parameter.

Filtering Target Elements of Code
Note that the default behavior is maximalistic: we apply the attribute to all contained elements. However, PostSharp
provides a way to restrict the set of elements to which the attribute is multicast: filtering.
Both the attribute developer and the user of the aspect can specify filters.

Developer-Specified Filtering
Just like normal custom attributes should be decorated with the [AttributeUsage] custom attribute, multicast custom
attributes must be decorated by the [MulticastAttributeUsage] attribute (see MulticastAttributeUsageAttribute).
It specifies which are the valid targets of the multicast attributes.
For instance, the following piece of code specifies that the attribute GuiThreadAttribute can be applied on instance
methods. Aspect users experience a build-time error when trying to use this aspect on a constructor or static method.

[MulticastAttributeUsage(MulticastTargets.Method, TargetMemberAttributes = MulticastAttributes.Instance)]
[AttributeUsage(AttributeTargets.Assembly|AttributeTargets.Class|AttributeTargets.Method, AllowMultiple = true)]
[PSerializable]
public class GuiThreadAttribute : MethodInterceptionAspect
{
// Details skipped.
}

Adding Aspects to Code

198

Note the presence of the AttributeUsageAttribute attribute in the sample above. It tells the C# or VB compiler that
the attribute can be directly applied to assemblies, classes, constructors, or methods. But this aspect will never be
eventually applied to an assembly or a class. Indeed, the MulticastAttributeUsageAttribute attribute specifies that
the sole valid targets are methods. Furthermore, the TargetMemberAttributes property establishes a filter that includes
only instance methods.
Therefore, if the aspect is applied on a type containing an abstract method, the aspect will not be multicast to this
method, neither to its constructors.

TIP
Additionally to multicast filtering, consider using programmatic validation of aspect usage. Any custom attribute can
implement IValidableAnnotation to implement build-time validation of targets. Aspects that derive from Aspect
already implement these interfaces: your aspect can override the method CompileTimeValidate(Object).

TIP
As an aspect developer, you should enforce as many restrictions as necessary to ensure that your aspect is only used in
the way you intended, and raise errors in other cases. Using an aspect in an unexpected way may result in runtime
errors that are difficult to debug.

User-Specified Filtering
The attribute user can specify multicasting filters using specific properties of the MulticastAttribute class. To make it
clear that these properties only impact the multicasting process, they have the prefix Attribute.
As an aspect user, it is important to understand that you can only apply aspects to elements of codes that have been
allowed by the developer of the aspect.
For instance, the following element of code adds a tracing aspect to all public methods of a namespace:

[assembly: Trace(AttributeTargetTypes="AdventureWorks.BusinessLayer.*", AttributeTargetMemberAttributes = MulticastAttributes.Public)]

Filtering Properties
The following table lists the filters available to users and developers of aspects:

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetElements ValidOn Restricts the kinds of targets (assemblies,
classes, value types, delegates, interfaces,
properties, events, properties, methods,
constructors, parameters) to which the
attribute can be indirectly applied.

AttributeTargetAssemblies Wildcard expression or regular expression
specifying to which assemblies the attribute is
multicast.

AllowExternalAssemblies Determines whether the aspect can be
applied to elements defined in a different
assembly than the current one.

Adding Aspects Declaratively Using Attributes

199

MulticastAttribute Property MulticastAttributeUsage-
Attribute Property

Description

AttributeTargetTypes Wildcard expression or regular expression
filtering by name the type to which the
attribute is applied, or the declaring type of
the member to which the attribute is applied.

AttributeTargetTypeAttributes TargetTypeAttributes Restricts the visibility of the type to which the
aspect is applied, or of the type declaring the
member to which the aspect is applied.

AttributeTargetMembers Wildcard expression or regular expression
filtering by name the member to which the
attribute is applied.

AttributeTargetMemberAttributes TargetMemberAttributes Restricts the attributes (visibility, virtuality,
abstraction, literality, ...) of the member to
which the aspect is applied.

AttributeTargetParameters Wildcard expression or regular expression
specifying to which parameter the attribute is
multicast.

AttributeTargetParameterAttributes TargetParameterAttributes Restricts the attributes (in/out/ref) of the
parameter to which the aspect is applied.

AttributeInheritance Inheritance Specifies whether the aspect is propagated
along the lines of inheritance of the target
interface, class, method, or parameter (see
Understanding Aspect
Inheritance on page 200).

CAUTION NOTE
Whenever possible, do not rely on naming conventions to apply aspects (properties AttributeTargetTypes,
AttributeTargetMembers and AttributeTargetParameters). This may work perfectly today, and break tomorrow if
someone renames an element of code without being aware of the aspect.

Overriding Filtering Attributes
Suppose we have two classes A and B, B being derived from A. Both A and B can be decorated with Multicast-
AttributeUsageAttribute. However, since B is derived from A, filters on B cannot be more permissive than filters on A.

In other words, the MulticastAttributeUsageAttribute custom attribute is inherited. It can be overwritten in derived
classes, but derived class cannot enlarge the set of possible targets. They can only restrict it.
Similarly (and hopefully predictably), the aspect user is subject to the same rule: she can restrict the set of possible
targets supported by the aspect, but cannot enlarge it.

14.1.7. Understanding Aspect Inheritance
This topic contains the following sections:

• Lines of Inheritance
• Strict and Multicast Inheritance

Adding Aspects to Code

200

Lines of Inheritance
Aspect inheritance is supported on the following elements.

Aspect Applied On Aspect Propagated To
Interface Any class implementing this interface or any other interface deriving this

interface.
Class Any class derived from this class.
Virtual or Abstract Methods Any method implementing or overriding this method.
Interface Methods Any method implementing that interface semantic.
Parameter or Return Value of an abstract,
virtual or interface method

The corresponding parameter or to the return value of derived methods
using the method-level rules described above.

Assembly All assemblies referencing (directly or not) this assembly.

NOTE
Aspect inheritance is not supported on events and properties, but it is supported on event and property accessors. The
reason of this limitation is that there is actually nothing like event inheritance or property inheritance in MSIL (events
and properties have nearly no existence for the CLR: these are pure metadata intended for compilers). Obviously,
aspect inheritance is not supported on fields.

Strict and Multicast Inheritance
To understand the difference between strict and multicast inheritance, remember the original role of Multicast-
Attribute: to propagate custom attributes along the lines of containment. So, if you apply a method-level attribute to a
type, the attribute will be propagated to all the methods of this type (some methods can be filtered out using specific
properties of MulticastAttribute, or MulticastAttributeUsageAttribute; see Adding Aspects Declaratively Using
Attributes on page 186 for details).
The difference between strict and multicasting inheritance is that, with multicasting inheritance (but not with strict
inheritance), even inherited attributes are propagated along the lines of containment.
Consider the following piece of code, where A and B are both method-level aspects.

[A(AttributeInheritance = MulticastInheritance.Strict)]
[B(AttributeInheritance = MulticastInheritance.Multicast)]
public class BaseClass
{

// Aspect A, B.
public virtual void Method1();

}

public class DerivedClass : BaseClass
{

// Aspects A, B.
public override void Method1() {}

// Aspect B.
public void Method2();

}

If you just look at BaseClass, there is no difference between strict and multicasting inheritance. However, if you look at
DerivedClass, you see the difference: only aspect B is applied to MethodB.

Adding Aspects Declaratively Using Attributes

201

The multicasting mechanism for aspect A is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method.

For aspect B, the mechanism is the following:

1. Propagation along the lines of containment from BaseClass to BaseClass.Method1.

2. Propagation along the lines of inheritance from BaseClass.Method1 to DerivedClass.Method1.

3. Propagation along the lines of inheritance from BaseClass to DerivedClass.

4. Propagation along the lines of containment from DerivedClass to DerivedClass.Method1and DerivedClass.
Method2.

In other words, the difference between strict and multicasting inheritance is that multicasting inheritance applies
containment propagation rules to inherited aspects; strict inheritance does not.

Avoiding Duplicate Aspects
If you read again the multicasting mechanism for aspect B, you will notice that the aspect B is actually applied twice to
DerivedClass.Method1: one instance comes from the inheritance propagation from BaseClass.Method1, the other
instance comes from containment propagation from DerivedClass.

To avoid surprises, PostSharp implements a mechanism to avoid duplicate aspect instances. The rule: if many paths lead
from the same custom attribute usage to the same target element, only one instance of this custom attribute is applied
to the target element.

CAUTION NOTE
Attention: you can still have many instances of the same custom attribute on the same target element if they have
different origins (i.e. they originate from different lines of code, typically). You can enforce uniqueness of custom
attribute instances by using AllowMultiple. See the section Overriding and Removing Aspect Instances on page 194
for details.

14.2. Adding Aspects Using XML
PostSharp not only allows aspects to be applied in code, but also through XML. This is accomplished by adding them to
your project’s .psproj file.
Adding aspects through XML gives the advantage of applying aspects without modifying the source code, which could be
an advantage in some legacy projects.

Specifying an attribute in XML
namespace MyCustomAttributes

{
// We set up multicast inheritance so the aspect is automatically added to children types.
[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
[PSerializable]
public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// Details skipped.

Adding Aspects to Code

202

}
}

Normally AutoDataContractAttribute would be applied to Customer in code as follows:

namespace MyNamespace
{

[AutoDataContractAttribute]
class Customer
{

public string FirstName {get; set;}
public string LastName { get; set; }

}
}

Using XML instead, we can remove the custom attribute from source code and instead specify a Multicast element in
the PostSharp project file, a file that has the same name as your project file (csproj or vbproj), but with the .psproj
extension:

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration">

<Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">
<my:AutoDataContractAttributeAttributeTargetTypes=" MyNamespace.Customer"/>

</Multicast>

</Project>

In this snippet, the xmlns:my attribute associates a prefix to an XML namespace, which must be mapped to the .NET
namespace and assembly where custom attributes classes are defined:

<Multicastxmlns:my="clr-namespace:MyCustomAttributes;assembly:MyAssembly">

The next line then specifies the custom attribute to apply and the target attributes to apply the custom attributes to:

<my:AutoDataContractAttributeAttributeTargetTypes="MyNamespace.Customer"/>

The XML element name must be the name of a class inside the .NET namespace and assembly as defined by the XML
namespace. Attributes of this XML element map to public properties or fields of this class.
Note that any property inherited from MulticastAttribute can be used here in order to apply the aspect to several
classes at a time. See the section Adding Aspects to Multiple Declarations on page 187 for details about these
properties.

14.3. Adding Aspects Programmatically using IAspectProvider
You may have situations where you are looking to implement an aspect as part of a larger pattern. Perhaps you want to add
an aspect, implement an interface and dynamically inject some logic into the target code. In those situations you will want
to apply an aspect to the target code and have that aspect then add other aspects to other elements of code.

Adding Aspects Programmatically using IAspectProvider

203

The theoretical concept can cause some mental gymnastics, so let's take a look at the implementation.
1. Create an aspect that implements that IAspectProvider interface.

public class ProviderAspect : IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

throw new System.NotImplementedException();
}

}

2. Cast the target object parameter to the type that will be targeted by this aspect: Assembly, Type, MethodInfo,
ConstructorInfo or LocationInfo.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type) targetElement;

throw new NotImplementedException();
}

3. In the ProvideAspects(Object) method returns an AspectInstance of the aspect type you want, for every target
element of code.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type type = (Type)targetElement;

return type.GetMethods().Select(
m => return new AspectInstance(targetElement, new LoggingAspect()));

}

This aspect will now add aspects dynamically at compile time. Use of the IAspectProvider interface and technique is
usually reserved for situations where you are trying to implement a larger design pattern. For example, it would be used
when implementing an aspect that created the NotifyPropertyChangedAttribute pattern across a large number of
locations in your codebase. It is overkill for many of the situations that you will encounter. Use it only for complicated
pattern implementation aspects that you will create.

NOTE
To read more about NotifyPropertyChangedAttribute, see Handling Corner Cases on page 114.

NOTE
PostSharp does not automatically initialize the aspects provided by IAspectProvider, even if the method CompileTime-
Initialize is defined. Any initialization, if necessary, should be done in the ProvideAspects method or in the constructor
of provided aspects.
However, these aspects are initialized at runtime just like normal aspects using the RunTimeInitialize method.

Creating Graphs of Aspects
It is common that aspects provided by IAspectProvider (children aspects) form an object graph. For instance, children
aspects may contain a reference to the parent aspect.

Adding Aspects to Code

204

An interesting feature of PostSharp is that object graphs instantiated at compile-time are serialized, and can be used at
run-time. In other words, if you store in a child aspect a reference to another aspect, you will be able to use this
reference at runtime.

Adding Aspects Programmatically using IAspectProvider

205

Adding Aspects to Code

206

CHAPTER 15

Miscellaneous

The following aspects are not really pattern implementations but do not fit in any other chapter.

Section Description
Executing Code Just After the Assembly is
Loaded on page 207

This topic shows how to add module initializers to your
code.

15.1. Executing Code Just After the Assembly is Loaded
Visual Basic has a concept of module. The module is a special class that gets initialized immediately when the assembly is
loaded. This feature is implemented by the CLR, but is not exposed to the C# language. The ModuleInitializerAttribute
attribute allows you to have module initializers in C#.

To add a module initializer to your project:
• Create a public or internal method that has no parameter and no return value. The type declaring the method

cannot have generic parameters.
• Add the ModuleInitializerAttribute attribute to this method.

You can add several module initializers a project. Module initializers will be executed in the order you specified in the
attribute constructor.

Executing Code Just After the Assembly is Loaded

207

PART 4

Threading Patterns

CHAPTER 16

Writing Thread-Safe Code with Threading
Models

A threading model is a design pattern that gives guarantees that your code executes safely on a multi-threaded computer.
Threading models both define coding rules (for instance: all fields must be private) and add new behaviors to existing code
(for instance: acquiring a lock before method execution). Coding rules are typically enforced at build time or at run time;
violations result in build-time errors or run-time exceptions. Threading models may also require the use of custom
attributes in source code, for instance to indicate that a method requires read access to the object.

TIP
We recommend to assign a threading model to every class whose instances can be shared between different threads.

Threading models raise the level of abstraction at which multi threading is addressed. Compared to working directly with
locks and other low-level threading primitives, using threading models has the following benefits:

• Threading models are named solutions to a recurring problem. Threading models are specific types of design
patterns, and have the same benefits. When team members discuss the multi-threaded behavior of a class, they
just need to know which threading model this class uses. They don't need to know the very details of its
implementation. Since the human short-term memory seems to be limited to 5-9 elements, it is important to think
in terms of larger conceptual blocks whenever we can.

• Much of the code required to implement the threading model can be automatically generated, which decreases
the number of lines of code, and therefore the number of defects. It also reduces development and maintenance
costs.

• Your source code can be automatically verified against the selected threading model, both at build time and at
run time. This makes the discovery of defect much more deterministic. Without verifications, threading defects
usually show up randomly and provoke data structure corruption instead of immediate exceptions. Run-time
verification would be too labor-intensive to implement without compiler support, so would be most likely
omitted.

Available threading models
PostSharp Threading Library provides an implementation for the following threading models:

Threading Model Aspect Type Description
Thread-Unsafe
Threading
Model on page 233

ThreadUnsafeAttribute These objects may never be accessed concurrently by
several threads.

Thread Affine
Threading
Model on page 236

ThreadAffineAttribute These objects must be accessed from a the thread that
instantiated them.

Executing Code Just After the Assembly is Loaded

211

Threading Model Aspect Type Description
Synchronized
Threading
Model on page 229

SynchronizedAttribute Synchronized objects can be accessed by a single thread
at a time. Other threads will wait until the object is
available.

Reader/Writer
Synchronized
Threading
Model on page 225

ReaderWriterSynchronizedAttribute These objects that can be read concurrently by several
threads, but write access requires exclusivity. Public
methods of this object must specify which kind of access
they require (read or write, typically).

Actor Threading
Model on page 220

ActorAttribute These objects communicate with their clients using an
asynchronous communication pattern. All accesses to the
object are queued and then processed in a single thread.
However, queuing is transparent to clients, which just call
standard void or methods.

Freezable
Threading
Model on page 212

FreezableAttribute These objects can be set to a state where their property
values can no longer be changed. Unlike immutable
objects, the developer dictates the time and place in
their code where changes to the object's state will no
longer be accepted.

Immutable
Threading
Model on page 216

ImmutableAttribute These objects cannot have their state changed after their
constructor has finished executing.

Other topics
Article Description
Making a Whole Project or Solution
Thread Safe on page 240

This article describes how to get compiler warnings when you forget to assign
a threading model to a type.

Opting In and Out From Thread
Safety on page 242

This article shows how to disable the enforcement of the threading model for
specific fields or methods.

Compatibility of Threading
Models on page 243

This article lists compatibility of threading models when they are applied to
objects that are in a parent-child relationship.

Enabling and Disabling Runtime Verifi-
cation on page 244

This article explains when runtime verification is enabled or disabled and how
to customize the default behavior.

Conceptual documentation
Please read this technical white paper27 for details about the concepts and architecture of PostSharp Threading Models.

16.1. Freezable Threading Model
When you need to prevent changes to an instance of an object most of the time, but not all of the time, the Immutable
pattern (implemented by the ImmutableAttribute aspect) will be too aggressive for you. In these situations you need a

27. http://www.postsharp.net/links/threading-model-white-paper

Writing Thread-Safe Code with Threading Models

212

http://www.postsharp.net/links/threading-model-white-paper
http://www.postsharp.net/links/threading-model-white-paper

pattern that allows you to define the point in time where immutability begins. To accomplish this you can make use of the
FreezableAttribute aspect.

This topic contains the following sections:
• Making an object freezable using PostSharp Tools for Visual Studio on page 213
• Making an object freezable manually on page 214
• Freezing an object on page 215
• Determining whether an object is in frozen state on page 215
• Freezable object trees on page 215

To make an object freezable all you need to do is add the FreezableAttribute attribute to the class in question.

Making an object freezable using PostSharp Tools for Visual Studio

NOTE
This example shows freezing a class that only has primitive data types. Information on working with complex objects
can be found the Freezable Object Trees section later in this article.

1. First place the caret on the name of the object that you want to make freezable. The smart tag will appear
below the object name. Expand it and select "Apply Threading Model...".

Freezable Threading Model

213

2. In the Apply Threading Model wizard select "Apply freezable threading model" and click Next.

If you have not added a reference to the threading model assembly the Apply Threading Model wizard will
download it from NuGet and add the reference.

3. Once the wizard has completed the object will now be flagged as freezable and the Customer and Item
properties have had Parent-Child relationships established on them.

using PostSharp.Patterns.Threading;

[Freezable]
public class Invoice
{

public long Id { get; set; }
}

Making an object freezable manually

NOTE
This example shows freezing a class that only has primitive data types. To see how to work with complex objects see
the Freezable Threading Model on page 212 section later in this article.

1. Add the PostSharp.Patterns.Threading package to your project using NuGet.
2. Add the FreezableAttribute custom attribute to your class.

using PostSharp.Patterns.Threading;

[Freezable]
public class Invoice
{

public long Id { get; set; }
}

Writing Thread-Safe Code with Threading Models

214

Freezing an object
To freeze an object, use will first have to case the object to the IFreezable interface. After that you are able to call the
Freeze method.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

NOTE
The IFreezable interface will be injected into the Invoice class after compilation. Tools that are not aware of Post-
Sharp may incorrectly report that the Invoice class does not implement the IFreezable interface.

Instead of using the cast operator, you can also use the CastSourceType, TargetType(SourceType) method. This
method is faster and safer than the cast operator because it is verified and compiled by PostSharp at build time.

NOTE
If you are attempting to freeze either AdvisableCollectionT or AdvisableDictionaryTKey, TValue you will not be
able to use the cast operator or the CastSourceType, TargetType(SourceType) method. Instead, you will have to use
the QueryInterfaceT(Object, Boolean) extension method.

Once you’ve called the Freeze method on an object instance the code will no longer be able to change the property
values on that instance. If a value change is attempted the code will throw an ObjectReadOnlyException.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// This will throw an exception.
invoice.Id = 345678;

Determining whether an object is in frozen state
To determine whether an object has been frozen, cast it to IThreadAware and get the readonly value from IsReadOnly
via the ConcurrencyController property.

var invoice = new Invoice();
invoice.Id = 123456;

((IFreezable)invoice).Freeze();

// The 'frozen' property will be set to 'true'.
bool frozen = ((IThreadAware)invoice).ConcurrencyController.IsReadOnly;

Freezable object trees
The Freezable pattern relies on the Aggregatable pattern. The AggregatableAttribute aspect will be implicitly added
to the target class. Therefore, you can not only create freezable classes, but also freezable object trees. Read the Parent/
Child Relationships on page 127 for more information on how to establish object trees.

Freezable Threading Model

215

IMPORTANT NOTE
Children of freezable objects must be either freezable either immutable. Therefore, children classes must be annotated
with the FreezableAttribute or ImmutableAttribute custom attribute. Collection types must be derived from
AdvisableCollectionT or AdvisableDictionaryTKey, TValue.

16.2. Immutable Threading Model
There are times when you want certain objects in your codebase to retain their post creation state without possibility of it
ever changing. These objects are said to be immutable. Immutable objects are useful in multi-threaded applications
because they can be safely accessed by several threads concurrently, without need for locking or other synchronization.
PostSharp offers the ImmutableAttribute aspect that allows you enforce this pattern on your objects.

Changes in an object with the ImmutableAttribute aspect will be forbidden as soon as the object constructor exits. Any
further attempt to modify the object will result in an ObjectReadOnlyException.

NOTE
The Immutable pattern can be too strong for some common object-oriented scenarios, for instance with serializable
classes. In some cases, the Freezable object is a better choice. For details, see Freezable Threading Model on page 212.

This topic contains the following sections:
• Making a class immutable using PostSharp Tools for Visual Studio on page 216
• Making a class immutable manually on page 217
• Immutable object trees on page 218
• Immutable vs readonly on page 218
• Constructor execution on page 219
• Immutable collections on page 220

To make an object immutable all you need to do is add the ImmutableAttribute attribute to the class in question.

Making a class immutable using PostSharp Tools for Visual Studio

NOTE
This example shows freezing a class that only has primitive data types. Information on working with complex objects
can be found the Working With Immutable Object Trees section later in this article.

To add the Immutable pattern using PostSharp Tools for Visual Studio:
1. First place the caret on the name of the class that you want to make immutable. The smart tag will appear

below the object name. Expand it and select Apply Threading Model.

Writing Thread-Safe Code with Threading Models

216

2. In the Apply Threading Model wizard select Apply immutable threading model and click Next.

If you have not yet added the PostSharp.Patterns.Threading package to your project, the Apply Threading
Model wizard will download it from NuGet and install it into your project.

3. Once the wizard has completed the class will now be flagged as immutable.

using PostSharp.Patterns.Threading;

[Immutable]
public class Invoice
{

public Invoice(long id)
{

Id = id;
}
public long Id { get; set; }

}

Now, once you’ve created an instance of the immutable object your code will no longer be able to change the
property values on that instance. If a value change is attempted the code will throw an ObjectReadOnly-
Exception.

var invoice = new Invoice(12345);

// This will throw an exception.
invoice.Id = 345678;

Making a class immutable manually
To add the Immutable pattern manually:

1. Add the PostSharp.Patterns.Threading package to your project using NuGet.
2. Add the ImmutableAttribute custom attribute to your class.

Immutable Threading Model

217

Immutable object trees
Because the Immutable pattern is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. As a result you can create both immutable classes and immutable object trees.
For more information regarding object trees, read Parent/Child Relationships on page 127.

NOTE
Children of immutable objects must be marked as immutable themselves. Adding the ImmutableAttribute to the
child classes will accomplish this. Additionally, collection types must be derived from AdvisableCollectionT or
AdvisableDictionaryTKey, TValue.

Immutable vs readonly
Many C# developers make use of the readonly keyword in an attempt to make their objects immutable. The readonly
keyword doesn't guarantee immutability though. Using readonly only ensures that no method other than the object's
constructor can alter the variable's value. It doesn't, however, prevent you from altering values on complex objects
outside of the constructor.
In the following code sample the _id variable is a primitive type and can't be altered outside the constructor. This is
enforced at compile time and an error would be displayed where the SetIdentifier method attempts to change the
_id field's value.

public class Invoice
{

public readonly long _id;
public Invoice(long id)
{

SetIdentifier(id);
}
public void SetIdentifier(long id)
{

_id = id;
}

}

If you were to mark a complex object as readonly the same rule holds true as it does for primitive types. You are not
able to change the complex object instance outside of the constructor. In the following example, initializing the
Customer in the constructor is valid, but reinitializing it in the Refresh method will cause a compilation error.

public class Invoice
{

public readonly Customer _customer;
public Invoice()
{

_customer = new Customer();
}

public void Refresh()
{

//will cause a compilation error
_customer = new Customer();

}
}

What you can do when a complex object is marked as readonly is alter the values within that complex object. In the
case of the Customer object you cannot reinitialize the instance but you can change the properties on the already
created instance. What you see in the following Refresh methd is perfectly valid.

Writing Thread-Safe Code with Threading Models

218

public class Invoice
{

public readonly Customer _customer;
public Invoice()
{

_customer = new Customer();
}

public void Refresh()
{

//valid but not immutable
_customer.Name = "Jim";
_customer.Phone = "555-123-9876";

}
}

The same type of change to object state can happen with collections. You can not reinitializee a readonly collection, but
you can freely Add, Remove, Clear and do other operations that the collection itself exposes. Additionally if the collection
contains complex types you are able to change values on each instance that the collection contains.

public class Invoice
{

public readonly IList<Item> _items;
public Invoice()
{

_items = new List<Item>();
}

public void Refresh()
{

//will cause a compilation error
_items = new List<Item>();

//valid but not immutable
_items.Add(new Item());
_items[0].Price = 3.50;
_items.RemoveAt(0);

}
}

As you can see there is no way to use the readonly keyword to make complex object graphs immutable. Combining the
ImmutableAttribute, ChildAttribute, AdvisableCollectionT and the AdvisableDictionaryTKey, TValue types
allows you to make immutable objects that guarantee no changes to primitive or complex objects after constructor
execution has completed.

Constructor execution
Objects are not frozen until the last constructor has finished executing. Because of this you can use the constructor to
set up the state of the parent instance through its own constructor as well as chained, or inherited object, constructors.
You're also able to make changes to child object instances through their constructors at this time.

[Immutable]
public class Invoice : Document
{

public Invoice(long id) : base(id)
{

Items = new AdvisableCollection<Item>();
Items.Add(new Item("widget"));

}

[Child]
public AdvisableCollection<Item> Items { get; set; }

}

[Immutable]
public class Document
{

Immutable Threading Model

219

private long _id;
public Document (long id)
{

_id = id;
}

}

[Immutable]
public class Item
{

public Item (string name)
{

Name = name;
}
public string Name { get; set; }

}

In this example the constructors finish executing in the order of Document, Item and finally Invoice. It is not until after
the Invoice constructor finishes executing that the object graph is made immutable.

Immutable collections
When authoring immutable object models, immutable collections are a good replacement for advisable collections. For
details, see Using Immutable Collections on page 141.

16.3. Actor Threading Model
Given the complexity of trying to coordinate accesses to an object from several threads, sometimes it makes more sense to
avoid multi threading altogether. The Actor model avoids the need for thread safety on class instances by routing method
calls from each instance to a single message queue which is processed, in order, by a single thread.
Since the processing for each instance takes place in a single thread, multi-threading is avoided altogether and the object is
guaranteed to be free of data races. Calls are processed asynchronously in the order in which they were added to the
message queue. Because all calls to an actor are asynchronous, it is recommended that the async/await feature of C# 5.0 be
used.
Additionally to provide a race-free programming model, the Actor pattern has the benefit of transparently distributing the
computing load to all available CPUs without additional logic. Note that PostSharp’s implementation does not assign a new
thread to each actor instance but uses a thread pool instead, so it is possible to have a very large number of actors with
relatively low overhead.
This topic contains the following sections:

• A single-threaded example on page 220
• Applying the Actor model using PostSharp Tools for Visual Studio on page 221
• Applying the Actor manually on page 223
• Working with complex state on page 224
• Dealing with constraints of the Actor model on page 224

A single-threaded example
Consider the following example of an AverageCalculator class. The code is not thread-safe because incrementing the
count has four operations (read and write) that must all be performed atomically.

class AverageCalculator
{

float sum;
int count;

Writing Thread-Safe Code with Threading Models

220

public void AddSample(float n)
{

this.count++;
this.sum += n;

}

public float GetAverage()
{

return this.sum / this.count;
}

}

We could use the Synchronized or Reader-Writer Synchronized threading model to make sure that the calling thread
will wait if the object is currently being accessed by another thread. Another solution in this situation is to avoid
concurrency altogether using the Actor pattern and asynchronous methods.

Applying the Actor model using PostSharp Tools for Visual Studio
To apply the Actor threading model to your class with PostSharp Tools for Visual Studio:

1. Place the mouse cursor over your class name and select “Apply threading model…” from the drop-down.

2. Select “Apply actor threading model” and click Next.

Actor Threading Model

221

3. Verify the actions on the Summary screen and click Next.

4. Click Finish after the installation completes:

Your class will now have the ActorAttribute and all dependencies will have been added to the project.

5. Finally, you need to change all methods that have a return value to asynchronous methods, add Reentrant-
Attribute attribute to them, and modify the code that calls them.

Writing Thread-Safe Code with Threading Models

222

Applying the Actor manually
To apply the Actor threading model manually:

1. Add the PostSharp.Patterns.Threading NuGet package to your project.
2. Add the ActorAttribute to the class.

3. Finally, you need to change all methods that have a return value to asynchronous methods, and modify the
code that calls them.

In the reworked example below, the AverageCalculator class has had the ActorAttribute added and the GetAverage
methods has been changed into asynchronous with ReentrantAttribute attribute. The AddSample method was also
changed to an async method returning Task and ReentrantAttribute attribute was applied.

[Actor]
class AverageCalculator
{

float sum;
int count;

[Reentrant]
public async Task AddSample(float n)
{

this.count++;
this.sum += n;

}

[Reentrant]
public async Task<float> GetAverage()
{

return this.sum / this.count;
}

}

You can now use the same AverageCalculator from two concurrent threads.

class Program
{

static void Main(string[] args)
{

MainAsync().GetAwaiter().GetResult();
}

static async Task MainAsync()
{

AverageCalculator averageCalculator = new AverageCalculator();

SampleObserver observer = new SampleObserver(averageCalculator);
DataSources.Source1.Subscribe(observer);
DataSources.Source2.Subscribe(observer);

Console.ReadKey();

float average = await averageCalculator.GetAverage();

Console.WriteLine("Average: {0}", average);
}

}

class SampleObserver : IObserver<float>
{

AverageCalculator calculator;

public void OnNext(float value)
{

Actor Threading Model

223

// Each of the data sources can call us from a different thread and concurrently.
// But we don't have to care since our calculator will enqueue method calls.
this.calculator.AddSample(value);

}

// Details skipped.
}

Behind the scenes, each invocation of AverageCalculator.AddSample is added to the message queue by the Actor-
Attribute, which then processes each call sequentially in the order it was added to the queue. This gives us the
guarantee that an instance of the AverageCalculator class is never being accessed concurrently by two threads, and
eliminates the need to make take multi-threading into account.

Working with complex state
PostSharp generates code that prevents the fields of an actor class to be accessed from an invalid context. For instance,
trying to read an actor field from a background task would result in a ThreadAccessException. However, very often,
state is more complex than fields of simple type like int or string. State can be composed of several objects and
collections.
To prevent state corruption, it is important that PostSharp generates code that enforces the Actor model at runtime
even for child objects of the actor.

To add complex state to actor classes:
1. Declare the Parent-Child relationship on the property using the ChildAttribute custom attribute:

[Actor]
class AverageCalculator
{

float sum;
int count;

[Child]
private CounterInfo counterInfo;

// Other details skipped for brevity
}

2. Add the PrivateThreadAwareAttribute attribute to the child class.

[PrivateThreadAware]
public class CounterInfo
{

public string Name { get; set; }
}

For more information regarding parent-child relationships in threading models, see also Parent/Child
Relationships on page 127.

Dealing with constraints of the Actor model
Per definition of the Actor model, all methods are executed asynchronously. Methods that have no return value (void
methods) can be executed asynchronously without syntactic changes. However, methods that do have a return value
need to be made asynchronous using the async keyword.

In some situations, the application of the async keyword and the corresponding dispatching of the method may be
unnecessary. For instance, a method that returns immutable information is always thread-safe and does not need to be
dispatched. For more information on excluding methods from dispatching, see Opting In and Out From Thread
Safety on page 242.

Writing Thread-Safe Code with Threading Models

224

16.4. Reader/Writer Synchronized Threading Model
When a class instance is concurrently used by multiple threads, accesses must be synchronized to prevent data races, which
typically result in data inconsistencies and corruption of data structures.
Consider the following example of an Order class which stores an amount and a discount:

class Order
{

int Amount { get; private set; }
int Discount { get; private set; }

public int AmountAfterDiscount
{

get { return this.Amount - this.Discount; }
}

public void Set(int amount, int discount)
{

if (amount < discount)
throw new InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}
}

In this example, the Set method writes to the Amount and Discount members, while the AmountAfterDiscount property
reads these members. In a single-threaded program, the AmountAfterDiscount property is guaranteed to be positive or
zero. However, in a multi-threaded program, the AmountAfterDiscount property could be evaluated in the middle of the
Set operation, and return an inconsistent result.

This topic contains the following sections:
• Problems of the lock keyword on page 225
• Reader-writer locks on page 225
• Making a class reader-writer synchronized on page 226
• Executing long-running write methods on page 228
• Working with object trees on page 229

Problems of the lock keyword
The easiest way to synchronize accesses to a class in C# is to use the lock keyword. However, this practice cannot be
generalized for two reasons:

• The use of exclusive locks often results in high contention and therefore low performance because many
threads queue to access the same resource;

• Applications relying on exclusive locks are prone to deadlocks because of cyclic waiting dependencies.

Reader-writer locks
Reader-writer locks take advantage of the fact that most applications involve much fewer writes than reads, and that
concurrent reads are always safe. Reader-writer locks ensure that no other thread is accessing the object when it is
being written. Reader-writer locks are normally implemented by the .NET classes ReaderWriterLock or ReaderWriter-
LockSlim. The following example shows how ReaderWriterLockSlim would be used to control reads and writes in the
Order class:

class Order
{

private ReaderWriterLockSlim orderLock = new ReaderWriterLockSlim();

Reader/Writer Synchronized Threading Model

225

public decimal Amount { get; private set; }
public decimal Discount { get; private set; }

public decimal AmountAfterDiscount
{

get
{

orderLock.EnterReadLock();
decimal result = this.Amount - this.Discount;
orderLock.ExitReadLock();
return result;

}
}

public void Set(decimal amount, decimal discount)
{

if (amount < discount)
{

throw new InvalidOperationException();
}

orderLock.EnterWriteLock();
this.Amount = amount;
this.Discount = discount;
orderLock.ExitWriteLock();

}
}

However, working directly with the ReaderWriterLock and ReaderWriterLockSlim classes has disadvantages:

• It is cumbersome because a lot of code is required.
• It is unreliable because it is too easy to forget to acquire the right type of lock, and these errors are not

detectable by the compiler or by unit tests.

So, not only the direct use of locks results in more lines of code, but it won’t reliably prevent non-deterministic data
structure corruptions.

Making a class reader-writer synchronized
PostSharp Threading Pattern Library has been designed to eliminate non-deterministic data corruptions while reducing
the size of thread synchronization code to the absolute minimum (but not less).
The ReaderWriterSynchronizedAttribute aspect implements the threading model (or threading pattern) based on the
reader-writer lock, with the following principles:

• At any time, the object can be open for reading or closed for reading.
• Methods define their required access level using [ReaderAttribute] and [WriterAttribute] custom attributes

(other access levels exist for advanced scenarios)
• An error will be emitted at build-time or runtime, but deterministically, whenever an object field is being

accessed by a method that does not have the required access level on the object.

There are two ways to add the reader-writer-synchronized pattern to your class:
1. using the user interface
2. manually

To apply the Reader-Writer Synchronized pattern using the user interface:
1. Hover the mouse over the class name. This displays the smart tag dropdown.

Writing Thread-Safe Code with Threading Models

226

2. Click the smart tag dropdown and click Apply threading model:

3. Select Apply reader-writer-synchronized threading model and click Next:

4. Click Next on the summary screen and the click on Finished to complete the process. The ReaderWriter-
SynchronizedAttribute attribute is now applied to the class.

5. Once ReaderWriterSynchronizedAttribute is applied to the class, each method or property which accesses
member data must then be marked as a reader or a writer. Position the caret on the name of the method or
on the get or set keyword and choose "Acquire reader lock" or "Acquire writer lock" from the smart tag
dropdown.

To apply ReaderWriterSynchronizedAttribute to a class manually:
1. Add NuGet Package PostSharp.Patterns.Threading.

2. Add using PostSharp.Patterns.Threading.

3. Add the custom attribute [ReaderWriterSynchronizedAttribute] to the class.

4. Add the custom attribute [ReaderAttribute] or [WriterAttribute] to the public and internal methods. Note
that it is not necessary to put these attributes on property getters and setters or on events.

The following code shows the Order class , synchronized with the reader-writer threading pattern:

Reader/Writer Synchronized Threading Model

227

[ReaderWriterSynchronized]
class Order
{

decimal Amount { get; private set; }
decimal Discount { get; private set; }

public decimal AmountAfterDiscount
{

get { return this.Amount - this.Discount; }
}

[Writer]
public void Set(decimal amount, decimal discount)
{

if (amount < discount)
throw new InvalidOperationException();

this.Amount = amount;
this.Discount = discount;

}
}

ReaderAttribute places a lock on the instance whenever the property or method is invoked. While this lock is held,
other threads can also invoke a property or method of that instance which reads, but calls to properties or methods
marked with WriterAttribute will be blocked until all reads are complete.

Likewise, invoking properties or methods marked with WriterAttribute will lock the instance causing reads to block
until the write has completed and the write lock has been released.
Since ReaderWriterSynchronizedAttribute requires that all properties and methods which access member data be
marked with ReaderAttribute or WriterAttribute, ReaderWriterSynchronizedAttribute throws an exception when
an accessor does not have one of these attributes. This ensures that unsynchronized reads and writes are caught the
instant they occur.

NOTE
Property getters are intrinsically thread-safe and don’t need to be marked with a [ReaderAttribute] custom attribute.

Executing long-running write methods
Since write methods require exclusive access to the object, they should complete as quickly as possible. However, this is
not always possible. Some long-running write methods really do a lot of write operations (or rely on slow external
services) which make them inappropriate for the reader-writer-synchronized model. However, many write methods are
actually composed of a lot of read operations but just a few write operations at the end. In this case, it is possible to use
a combination of the UpgradeableReaderAttribute and WriterAttribute attributes. The UpgradeableReader-
Attribute attribute ensures that no other thread than the current one will be able to acquire a writer lock on the object,
so it gives the guarantee that the object is not going to be modified during the method’s execution. A method that
holds an upgradeable reader lock can then invoke a method with the WriterAttribute attributes custom attribute.
Note that it is important that the writer methods leave the object in a consistent state before exiting, because other
threads will be allowed to read the object.
The following example builds on that in the section where the Order class contains a collection of Line objects which
make up the order. In the example below, a new method called Recalculate() has been added to Order which iterates
through each Line in the collection, tallies up the amount from each, and then stores the total in Amount.

Since the Recalculate method performs a series of reads followed by a write operation (to store the total in Amount), it
is marked with the UpgradeableReaderAttribute attribute which ensures that all of the orders that it reads remain
locked so that it calculates and writes out the correct total. In addition to this, the set accessor of the Order’s Amount
property as been marked with WriterAttribute:

Writing Thread-Safe Code with Threading Models

228

[ReaderWriterSynchronized]
class Order
{

// Other details skipped for brevity.

public decimal Amount
{

// The [Reader] attribute optional here is optional because the method is a public getter.
get;

// The [Writer] attribute is required because, although the method is a setter, this setter is private,
// therefore is does not acquire write access by default.
[Writer] private set;

}

[UpgradeableReader]
public void Recalculate()
{

decimal total = 0;

for (int i = 0; i < lines.Count; ++i)
{

total += lines[i].Amount;
}

this.Amount = total;
}

}

Working with object trees
Because the Reader/Writer Synchronized model is an implementation of the Aggregatable pattern, all of the same
behaviors of the AggregatableAttribute are available. For more information regarding object trees, read Parent/Child
Relationships on page 127.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 243 article to determine which
threading model will work for the children of the Read/Writer Synchronized object.

16.5. Synchronized Threading Model
A common way to avoid data races is to enclose all public instance methods of a class with a lock(this) statement. This is
basically what the Synchronized model does
This article describes how to use the Synchronized model and how it differs from the use of lock(this) statement.

This topic contains the following sections:
• Comparing with lock(this) on page 230
• Applying the Synchronized Model using PostSharp Tools for Visual Studio on page 230
• Applying Synchronized manually on page 232
• Working with object trees on page 233

Synchronized Threading Model

229

Comparing with lock(this)
Traditionally, the C# keyword lock(this) statement has been used to synchronize access of several threads to a single
object. When an object is locked by one thread, any other object that attempts to access that object will have its
execution blocked.

private object myLockingObject = new Object();

public void DoSomething()
{

lock(myLockingObject)
{

//some code that does something in one thread at a time
}

}

In this example the myLockingObject member variable is used as a locking object. Once a thread runs the lock(my-
LockingObject) line, all other threads that enter the DoSomething method will stop executing, or be blocked, until the
original thread has exited the lock(myLockingObject) code block.

The Synchronized model is similar to using the lock statement around every single public method, but it has the
following differences:

• It is not technically equivalent to locking the current instance (this). Another object is actually being locked.

• Locking is automatic for all public and internal instance methods. You cannot forget it.
• If a thread attempts to access a field without having first acquired access to the object (by invoking a public or

internal method), an exception will be thrown.
• The pattern also works with entities composed of several objects organized in a tree.

Applying the Synchronized Model using PostSharp Tools for Visual Studio
To apply the Synchronized threading model to your class with PostSharp Tools for Visual Studio:

1. Place the cursor over your class name and select "Apply threading model..." from the drop down

Writing Thread-Safe Code with Threading Models

230

2. Select "Apply Synchronized threading model" from the Select Model tab and select "Next".

3. Confirm the actions on the Summary tab and select "Next".

Synchronized Threading Model

231

4. Click Finish after the installation completes.

Your class will now have the SynchronizedAttribute and any previously missing PostSharp related references
will have been added to the project.

Applying Synchronized manually
To apply the Synchronized threading model manually:

1. Add the PostSharp.Patterns.Threading NuGet package to your project.
2. Add the SynchronizedAttribute to the class.

In the example below the SynchronizedAttribute has been added to the class.

[Synchronized]
public class OrderService
{

public void Process(int sequence)
{

Console.WriteLine("sequence {0}", sequence);
Console.WriteLine("sleeping for 10s");

Thread.Sleep(new TimeSpan(0,0,10));
}

}

To test this we can run the following code.

public void Main()
{

var orderService = new OrderService();

var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (sender, args) => orderService.Process(1);
backgroundWorker.RunWorkerAsync();

Writing Thread-Safe Code with Threading Models

232

orderService.Process(2);
}

The code above will attempt to execute the Process method on two different threads; the main thread and a
background worker thread. Because these two threads are trying to access the same instance of the OrderService the
first thread to access it will block the second. As a result, when you run the program you will first see the follwing.

Because the OrderService.Process method has a Thread.Sleep call, the first thread accessing that method will block
the second for 10 seconds. After those 10 seconds have passed the second thread will no longer be blocked and it will
be able to continue its execution.

Working with object trees
Because the Synchronized model is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. For more information regarding object trees, read Parent/Child
Relationships on page 127.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 243 article to determine which
threading model will work for the children of the Synchronized object.

16.6. Thread-Unsafe Threading Model
When you are dealing with multi-threaded code you will run into situations where some objects are not safe for concurrent
use by several threads. Although these objects should theoretically not be accessed concurrently, it is very hard to proof
that it never happens. And when it does happen, thread-unsafe data structures get corrupted, and symptoms may appear
much later. These issues are typically very difficult to debug. So instead of relying on hope, it would be nice if the object
threw an exception whenever it is accessed simultaneously by several threads. This is why we have the thread-unsafe
threading model.
This topic contains the following sections:

• Marking an object as thread-unsafe on page 233

Marking an object as thread-unsafe
To mark an object as thread-unsafe:

1. When you don't want multiple threads to access a single instance of a given class you will want to configure
InstanceLevelAspect thread safety. To do this, select "Apply threading model" from the smart tag on the
class.

Thread-Unsafe Threading Model

233

2. Choose the "Apply thread-unsafe threading model" option.

3. You will be prompted with a summary of the changes that will be made based on the configuration you
selected in the wizard.

Writing Thread-Safe Code with Threading Models

234

4. PostSharp will download the Threading Pattern Library and add it to your project if that hasn't been done yet.

5. Once the process has completed successfully you'll be presented with the final page of the wizard.

Thread-Unsafe Threading Model

235

6. You'll notice that only one change was made to your codebase. The [ThreadUnsafeAttribute] attribute was
added to the class you were targeting.

[ThreadUnsafe]
class AverageCalculator
{

float sum;
int count;

public void AddSample(float n)
{

this.count++;
this.sum += n;

}

public float GetAverage()
{

return this.sum / this.count;
}

}

Now when your application executes no two threads will be able to access a single instance of the AverageCalculator
class at the same time. If two threads attempt to do this, the second thread will receive a ConcurrentAccessException.
Without the exception, there would be a slight chance that internal sum or count fields would have invalid values
because the increment operations would not be atomic.

16.7. Thread Affine Threading Model
One of the simplest ways to consider threading is to limit object instance access to the thread that created the instance.
This is how the Thread Affine threading model works.
This topic contains the following sections:

• Adding the Thread Affine model using PostSharp Tools for Visual Studio on page 236
• Adding Thread Affine manually on page 238
• Understanding runtime enforcement on page 238
• Working with object trees on page 239

Adding the Thread Affine model using PostSharp Tools for Visual Studio
To apply the Thread Affine threading model to your class with PostSharp Tools for Visual Studio:

1. Place the cursor over your class name and select "Apply threading model..." from the drop down

Writing Thread-Safe Code with Threading Models

236

2. Select "Apply thread-affine threading model" from the Select Model tab and select "Next".

3. Confirm the actions on the Summary tab and select "Next".

Thread Affine Threading Model

237

4. Click Finish after the installation completes.

Your class will now have the ThreadAffineAttribute aspect and any previously missing PostSharp related
references will have been added to the project.

Adding Thread Affine manually
To apply the Thread-Affine threading model manually:

1. Add the PostSharp.Patterns.Threading NuGet package to your project.
2. Add the ThreadAffineAttribute to the class.

In the example below the ThreadAffineAttribute has been added to the class.

[ThreadAffine]
public class OrderService
{

public void Process(int sequence)
{

Console.WriteLine("sequence {0}", sequence);
Console.WriteLine("sleeping for 10s");

Thread.Sleep(new TimeSpan(0,0,10));
}

}

Understanding runtime enforcement
The ThreadAffineAttribute does not verify your code at build-time. Instead, it injects code that enforces the model at
runtime. If it detects that the object is being accessed from a different thread than the one that created it, the aspect will
throw a ThreadMismatchException exception.

To test this the thread-affine OrderService class, we can run the following code:

Writing Thread-Safe Code with Threading Models

238

public void Main()
{

var orderService = new OrderService();

orderService.Process(1);

var backgroundWorker = new BackgroundWorker();
backgroundWorker.DoWork += (sender, args) =>
{

try
{

orderService.Process(2);
}
catch (Exception ex)
{

Console.WriteLine(ex.ToString());
}

};
backgroundWorker.RunWorkerAsync();

}

The above code will execute the orderService.Process(1) method and output the following to the console.

That code successfully executed because the orderService instance was both created (via the new keyword) and
executed on the same thread.
After the 10 second sleep period a BackgroundWorker thread is opened and it is set to execute the orderService.
Process(2) method. If an exception is thrown that will be output to the console. When this piece of code executes you
will see the following console output.

As you can see that a ThreadMismatchException exception was thrown. This happened because the orderService
instance was created on the main thread and the BackgroundWorker thread attempted to execute it. Because the
OrderService class has been marked with the ThreadAffineAttribute attribute only the thread that creates an
instance of it can access that instance.

Working with object trees
Because the Thread-Affine model is an implementation of the Aggregatable pattern, all of the same behaviors of the
AggregatableAttribute are available. For more information regarding object trees, read Parent/Child
Relationships on page 127.

NOTE
Once you have established your parent-child relationships you will need to apply compatible threading models to the
child classes. You will want to refer to the Compatibility of Threading Models on page 243 article to determine which
threading model will work for the children of the Thread-Affine object.

Thread Affine Threading Model

239

16.8. Making a Whole Project or Solution Thread Safe
When you want to make a large application thread-safe with PostSharp threading models, it can become difficult to
remember to assign a threading model to every single class. In this situation, you can add the thread-safety policy to your
project or solution.
The thread-safety policy emits warnings in two situations:

• classes that are not assigned to a threading model,
• static fields that are not read-only or not of a thread-safe type.

IMPORTANT NOTE
The thread-safety policy does not make your application thread-safe by itself. What the thread-safety policy does is to
remind you to use threading models in your code. It is the use of threading models that makes your application thread-
safe.

This topic contains the following sections:
• Adding the thread-safety policy using PostSharp Tools for Visual Studio. on page 240
• Adding the thread-safety policy to a project manually. on page 241
• Adding the thread-safety policy to a whole solution manually. on page 241

Adding the thread-safety policy using PostSharp Tools for Visual Studio.
To apply the thread-safety policy to your application with PostSharp Tools for Visual Studio:

1. Right click on your solution or your project in Solution Explorer, select Add followed by PostSharp Policy...

Writing Thread-Safe Code with Threading Models

240

2. In the Add PostSharp policy wizard, expand Threading and select Thread Safety.
3. If you clicked on the solution, select the projects that you would like to add the policy to.
4. Review the configuration that you have selected and click Next.
5. Close the wizard when the process had completed by clicking Finish.

If you added the policy to the whole solution, the result of running this wizard is that a pssln file has been added to your
project. The pssln file contains an entry that enables deadlock detection across all projects in your solution.

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">
<Multicast>

<t:ThreadSafetyPolicy/>
</Multicast>

</Project>

Adding the thread-safety policy to a project manually.
To add the thread-safety policy to a project manually:

1. Add the PostSharp.Patterns.Threading NuGet package to the project.
2. Add the ThreadSafetyPolicy any C# file. We recommend you add it to a new file named GlobalAspects.cs.

using PostSharp.Patterns.Threading;
[assembly: ThreadSafetyPolicy]

Adding the thread-safety policy to a whole solution manually.
To manually add the thread-safety policy to a whole solution:

1. Open the solution's pssln file. This can be found under the Solution Items folder in Visual Studio's Solution
Explorer.

If the pssln file doesn't exist manually add the file at the solution level. Name the file with the same name as
your solution and the pssln file extension.

2. If you had to create the pssln file and add it to your solution add the following XML to it. If the pssln file
already existed in your project proceed to the next step.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">
</Project>

3. Add a multicast attribute to the Project element that will add ThreadSafetyPolicy to all the projects in the
solution.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">

<Multicast>
<t:ThreadSafetyPolicy/>

</Multicast>
</Project>

4. Add the PostSharp.Patterns.Threading NuGet package to all projects in the solution.

Once you save the pssln file you will have added thread-safety policy to all projects in your solution.

Making a Whole Project or Solution Thread Safe

241

16.9. Opting In and Out From Thread Safety
By default, PostSharp enforces thread safety for all instance fields and all public and internal methods of any class to which
you applied a threading model.
However, there are times when you want to opt-out from this mechanism for a specific field or method. A typical reason is
that access to the field is synchronized manually using a different mechanism.
This section shows how to override the default thread safety implemented by PostSharp.
This topic contains the following sections:

• Opting out from thread-safety verification for a method on page 242
• Opting out from thread-safety for a field on page 242
• Opting in for thread safety for callback methods on page 243

Opting out from thread-safety verification for a method
To disable enforcement of the class-level threading model for a specific method, add the ExplicitlySynchronized-
Attribute attribute to that method.

In the following example, this custom attribute allows us to implement the ToString in a class that respects the Actor
model. Without the custom attribute, this would not have been possible because non-void public methods must have
the async keyword.

[Actor]
class Player
{

private readonly string name;

[ExplicitlySynchronized]
public override string ToString()
{

return this.name;
}

}

When used on a method, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Lock-based aspects such as SynchronizedAttribute or ReaderWriterSynchronizedAttribute will not
attempt to acquire a lock before executing this method.

2. Accesses to fields are not verified during the whole execution of the method (for the current thread).
3. All build-time verifications are disabled for this method.

CAUTION NOTE
By using the ExplicitlySynchronizedAttribute custom attribute, you are significantly increasing the risk that
multithreading defects in user code go undetected by PostSharp. Code using ExplicitlySynchronizedAttribute
should be more carefully covered by reviews and tests.

Opting out from thread-safety for a field
To disable enforcement of the class-level threading model for a specific field, add the ExplicitlySynchronized-
Attribute attribute to the field:

[Actor]
class MyActor
{

Writing Thread-Safe Code with Threading Models

242

[ExplicitlySynchronized]
int counter;

public void FooBar()
{

// This line would throw an exception without [ExplicitlySynchronized].
Task.Factory.StartNew(() => Interlocked.Increment(ref this.counter));

}

}

When used on a field, the ExplicitlySynchronizedAttribute attribute has several effects:

1. Accesses to the field are never verified
2. All build-time verifications are disabled for this method.

Opting in for thread safety for callback methods
By default, thread safety is ensured when a thread first invokes a public or internal method of an object. The underlying
motivation is that public and internal methods are the primary way how a thread can enter an object. Another way is to
enter an object through a delegate call to a private method. By default, PostSharp does not ensure thread safety for
private methods. If you register a callback method, you need to add the EntryPointAttribute custom attribute on this
method.
In the following code snippet, the OnCreated method is invoked from a background thread by the FileSystemWatcher
class. The InputQueueWatcher is thread-safe thanks to the SynchronizedAttribute aspect.

[Synchronized]
class InputQueueWatcher
{

FileSystemWatcher watcher;

[Child]
AdvisableCollection<string> files = new AdvisableCollection<string>();

public InputQueueWatcher(string path)
{

this.watcher = new FileSystemWatcher();
this.watcher.Path = path;
this.watcher.NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName | NotifyFilters.DirectoryName;
this.watcher.Filter = "*.xml";
this.watcher.Created += new FileSystemEventHandler(OnCreated);

}

[EntryPoint]
private void OnCreated(object source, FileSystemEventArgs e)
{

// Without [EntryPoint], the following line would throw ThreadAccessException.
this.files.Add(e.FullPath);

}

public ICollection Files { get { return this.files; } }

}

16.10. Compatibility of Threading Models
Required introduction

Compatibility of Threading Models

243

Compatibility Matrix
Parent Actor Freezable Immutable Private Reader-Writer

Synchronized
Synchronized Thread

Affine
Thread
Unsafe

Actor No Yes Yes Yes No No No Yes
Freezable No Yes Yes Yes No No No No
Immutable No Yes Yes Yes No No No No
Reader-Writer
Synchronized

Yes
(Own)

Yes Yes Yes Yes (Shared) No No No

Synchronized Yes
(Own)

Yes Yes Yes Yes (Shared) Yes (Shared) No No

Thread Affine Yes
(Own)

Yes Yes Yes No No Yes Yes
(Shared)

Thread Unsafe Yes
(Own)

Yes Yes Yes No No Yes Yes
(Shared)

Private

16.11. Enabling and Disabling Runtime Verification
When you apply a threading model to a class, PostSharp adds two kinds of behaviors: behaviors that are necessary to
implement the semantic of the threading model (for instance acquiring a lock or dispatching a method call) and behaviors
that validate that the source code is valid against the chosen threading model (for instance that no field is written if the
current method does not have write access). The second set of behaviors are called runtime verifications. By default, runtime
verifications are enabled in the Debug build and disabled in the Release build.
This section explains how to enable or disable runtime verification.
This topic contains the following sections:

• Understanding the default configuration on page 244
• Enabling or disabling runtime verification for a whole project on page 244
• Enabling and disabling runtime verification for a specific class on page 246

Understanding the default configuration
By default, runtime verification is disabled if the Optimize Code compiler flag is enabled. Therefore, runtime verification
is enabled by default in the Debug build and disabled in the Release build.

Enabling or disabling runtime verification for a whole project
Perform the following steps to enable runtime verification by using the Project Settings dialog

Writing Thread-Safe Code with Threading Models

244

Enabling Runtime Verification in Project Properties
1. Open the project's Properties window.

2. Select the build configuration that you want to enable runtime verification on.

NOTE
By default, projects have two different build configurations: Debug and Release. Each build configuration can,
and by default does, have a different behavior for runtime verification.

Enabling and Disabling Runtime Verification

245

3. Open the PostSharp tab.

4. In the Optional Features section there is a Runtime Verification dropdown. The dropdown has three options in
it; Default, Disabled, and Enabled.
The Default option will include either (Enabled) or (Disabled) after it. This value will change based on the
Optimize Code compiler flag setting. If the compiler flag is disabled the dropdown option will read Default
(Enabled) and if the Optimize Code flag is enabled the dropdown option will read Default (Disabled).

Enabling and disabling runtime verification for a specific class
You can override the project-level configuration of the runtime verification setting by setting the Runtime-
VerificationEnabled property of the threading model custom attribute. This property is defined by the ThreadAware-
Attribute class, from which all threading model attributes derive.

[ThreadAffine(RuntimeVerificationEnabled = true)]

If the property is not manually set it derives its value from the setting on the project properties page. If you want to
override the default value all you need to do is set the value of the RuntimeVerificationEnabled to true or false.

Writing Thread-Safe Code with Threading Models

246

16.12. Run-Time Performance of Threading Model
When runtime verification of threading models is disabled (see Enabling and Disabling Runtime Verification on page 244),
there is almost no runtime overhead of using PostSharp threading models compared to implementing thread synchro-
nization manually, at least after the object model has been instantiated.
However, PostSharp threading models come at a high memory cost, and there may be a significant performance overhead
when instantiating large object graphs, unless care is taken.
This topic contains the following sections:

• Memory Consumption on page 247
• Instantiation of Large Object Trees on page 247
• Assigning the Concurrency Controller Manually on page 248

Memory Consumption
As most complex aspects implemented with PostSharp, threading models have a high memory cost. Several object
instances are needed for each instance of a thread-safe class. If memory consumption is a concern, you should not use
threading models on classes that have a very high number of instances.

Instantiation of Large Object Trees
Threading models can have significant impact on the cost of creating large object trees. In some situations, the cost of
instantiting the tree can become O(n^2) instead of O(n). The performance issue affects only the following threading
models:

• Synchronized,
• Reader-Writer Synchronized and
• Thread-Unsafe.

The performance issue stems from the fact that each root node in a tree needs its own instance of its concurrency
controller.
Consider the scenario when you build a tree using a depth-first approach. That means that you would first instantiate
the leaves of the tree, then the parent of the leaves, then the parent of the parent, and so on until you reach the root.
Depth-first tree instantiation is a common strategy when you instantiate immutable trees. Note however that the
immutable model is not affected by this issue.
When you start instantiating the leaves, and until the leave is assigned to a parent, every leave the root of its own tree.
This means that an instance of the concurrency controller may be created if needed. When you instantiate the first-level
parents, a new concurrency controller is created for each first-level parent. When the leave is assigned to its parent, the
concurrency controllers of the leaves will be replaced by the concurrency controller of the immediate parent.
The same phenomenon occurs at each level of the tree. Whenever you assign a sub-tree to a parent, the concurrency
controller of whole subtree is reassigned. Replacing the concurrency controller of a subtree is an O(n) operation, and it
should be achieved for each of the n nodes, which means that totally the concurrency controllers will be reassigned
O(n^2) times.

During the operation of instantiating the tree, O(n) controllers may be instantiated. However, at the end of the
operation, a single controller will remain in memory.
To prevent PostSharp from allocating O(n) controllers and performing O(n^2) reassignments, you need to manually
assign newly-created objects to a concurrency controller.

Run-Time Performance of Threading Model

247

Assigning the Concurrency Controller Manually
To avoid excessive creation and assignment of concurrency controllers, you can use the WithConcurrency-
Controller(IConcurrencyController) method to set the default controller for newly-created objects.

The following code snippet illustrates the use of WithConcurrencyController(IConcurrencyController). Thanks to
this method, a single concurrency controller instance is created, and each node is assigned only once to this
concurrency controller, amounting to 3 assignments for 3 nodes. Without the use of this method, 3 instances of the
concurrency controller would have been created, and totally 5 assignments would be done.

using (ThreadAwareServices.WithConcurrencyController(ThreadAwareServices.CreateSynchronizedController()))
{

var child1 = new SynchronizedObject();
var child2 = new SynchronizedObject();

var parent = new SynchronizedObject();
parent.Children.Add(child1);
parent.Children.Add(child2);

}

Writing Thread-Safe Code with Threading Models

248

CHAPTER 17

Dispatching a Method to Background

Long running processes will block the further execution of code while the system waits for them to complete. When you are
building applications it's common to push long running processes to the background so that other processes can continue
without waiting. Two common ways of doing this are with asyncronous processing and the BackgroundWorker. Both require
a lot of boiler plate code to push execution to another thread.
PostSharp provides you with the ability to push execution of a method to a background thread without having to worry
about all of the boiler plate code.

To add [Background] attribute:
1. Find the method that you want to push to the background for execution.

public class CustomerRepository
{

public void DoStuff()
{

Console.WriteLine("Things are getting done");
}

}

2. Select "Execute method in the background" from the Smart Tag available under the method name.

3. You'll notice that only one change was made to your codebase. The [Background] attribute was added to the
class you were targeting. Now when this method executes in your application it will occur in another thread and
will allow for the calling code to continue executing.

public class CustomerRepository
{

[Background]
public void DoStuff()
{

Console.WriteLine("Things are getting done");
}

}

Those simple steps are all that is required for you to declare that a method should be executed in a background thread.

Run-Time Performance of Threading Model

249

Dispatching a Method to Background

250

CHAPTER 18

Dispatching a Method to the UI Thread

When you are building desktop or mobile user interfaces, parts of your code may execute on background threads.
However, the user interface itself can be accessed only from the UI thread. Therefore, it is often necessary to dispatch
execution of code from a background thread to the foreground thread.
Traditionally, thread dispatching has been implemented using the Invoke(Delegate) method in WinForms or the
Dispatcher class in XAML. However, this results in a large amount of boilerplate, making the code unreadable.

The DispatchedAttribute aspect addresses the issue of thread dispatching by forcing a method to execute on the thread
that created the object (typically the foreground thread).
This topic contains the following sections:

• Forcing a method to execute on the foreground thread on page 251
• Executing a method asynchronously on page 252
• Executing async methods in the foreground thread on page 252

Forcing a method to execute on the foreground thread
Once you've added background processing to the button click, you will need a way to have the SaveCompleted method
run on the UI thread. If you don't do this you will get an InvalidOperationException because setting the lblStatus.
Text property is a cross threading operation.

Here's how you can fix this:
1. Your code has encapsulated the UI thread interaction in the SaveCompleted method. Open the smart tag on

that method and choose to "execute the method in the object thread". This tells PostSharp to configure this
method to execute in the thread that the class containing the method is executing in.

Run-Time Performance of Threading Model

251

2. After selecting the smart tag option you will be returned to your code and you'll notice that the only change
was the addition of the [DispatchedAttribute] attribute to the SaveCompleted method.

[Dispatched]
private void SaveCompleted()
{

lblStatus.Text = "Finished Saving";
}

NOTE
Note, that [Dispatched] attribute can be applied only to instance methods of UI controls (WinForms or
WPF), or to any class implementing the IDispatcherObject interface manually.

Now if you run your code you will no longer receive the InvalidOperationException and instead will see the label on
the UI update. All of the Save functionality will occur in a separate thread which prevents the user interface from locking
up while that is happening.

Executing a method asynchronously
By default, the DispatchedAttribute forces the target method to execute synchronously on the foreground thread,
which means that the background thread will wait until the method execution has completed. This waiting causes some
performance overhead. Additionally, synchronous execution is not always useful. If the method has no return value and
no side effect of interest for the calling thread, the method could be safely executed asynchronously, which means the
calling thread would not need to wait for the method execution to complete on the foreground thread, so that the
calling thread would continue its execution immediately after having enqueued the call to the foreground thread.
You can enable asynchronous execution of a dispatched method by passing the true value to the parameter of the
DispatchedAttribute(Boolean) constructor, for instance:

[Dispatched(true)]
private void SaveCompleted()
{

lblStatus.Text = "Finished Saving";
}

Executing async methods in the foreground thread
When you use the DispatchedAttribute aspect on asynchronous methods (async keyword in C#), the method is
guaranteed to execute on the foreground thread even when it is invoked from a background thread.

Dispatching a Method to the UI Thread

252

CHAPTER 19

Detecting Deadlocks at Runtime

A common problem that is found in multi-threaded code is that multiple threads enter a situation where they are waiting
for each other to finish. This is a deadlock situation and neither thread will complete executing in this situation. Because the
threads are waiting on each other, neither is capable of providing diagnostic information to aid in debugging the situation.
The DeadlockDetectionPolicy helps provide this information.

This topic contains the following sections:
• Adding deadlock detection using PostSharp Tools for Visual Studio on page 253
• Manually adding deadlock detection to a project on page 257
• Manually adding deadlock detection to the whole solution on page 257
• Deadlock detection on page 258

Adding deadlock detection using PostSharp Tools for Visual Studio
To apply the deadlock detection to your application with PostSharp Tools for Visual Studio:

1. Right click on your solution in Solution Explorer, select Add followed by PostSharp Policy...

Run-Time Performance of Threading Model

253

2. In the Add PostSharp policy wizard, expand Threading and select Deadlock detection.

Detecting Deadlocks at Runtime

254

3. Select the projects that you would like to add deadlock detection to.

NOTE
You will need to add this to every project in your application. Excluding projects could cause your application
to fail.

Run-Time Performance of Threading Model

255

4. Review the configuration that you have selected and click Next.

5. Close the wizard when the process had completed by clicking Finish.

The result of running this wizard is that a pssln file has been added to your project.

Detecting Deadlocks at Runtime

256

The pssln file contains an entry that enables deadlock detection across all projects in your solution.

<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">
<Multicast>

<t:DeadlockDetectionPolicy/>
</Multicast>

</Project>

Manually adding deadlock detection to a project
To manually add deadlock detection to a project:

1. Add the PostSharp.Patterns.Threading NuGet package to the project.
2. Add the DeadlockDetectionPolicy custom attribute to in any C# file. We recommend you add it to a new file

named GlobalAspects.cs.

[assembly: DeadlockDetectionPolicy]

NOTE
You will need to add this to every project in your application. Excluding projects could cause your application
to fail.

Manually adding deadlock detection to the whole solution
Adding deadlock detection at a solution level can also be done manually. This can be done by adding an entry to the
pssln file in the solution.

To manually add deadlock detection to a solution:
1. Open the solution's pssln file. This can be found under the Solution Items folder in Visual Studio's Solution

Explorer.

If the pssln file doesn't exist manually add the file at the solution level. Name the file with the same name as
your solution and the pssln file extension.

2. If you had to create the pssln file and add it to your solution add the following XML to it. If the pssln file
already existed in your project proceed to the next step.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">
</Project>

Run-Time Performance of Threading Model

257

3. Add a multicast attribute to the Project element that will add DeadlockDetectionPolicy to all the projects in
the solution.

<?xmlversion="1.0"encoding="utf-8"?>
<Projectxmlns="http://schemas.postsharp.org/1.0/configuration"xmlns:t="clr-namespace:PostSharp.Patterns.Threading;assembly:PostSharp.Patterns.Threading">

<Multicast>
<t:DeadlockDetectionPolicy/>

</Multicast>
</Project>

4. Add the PostSharp.Patterns.Threading NuGet package to all projects in the solution.

Once you save the pssln file you will have added deadlock detection to all projects in your solution.

Deadlock detection
When a deadlock is detected a DeadlockException is thrown. The exception will include a detailed report of all the
threads and locks involved in the deadlock. Here is an example of that.

Detecting Deadlocks at Runtime

258

Run-Time Performance of Threading Model

259

PART 5

Custom Patterns

CHAPTER 20

Developing Custom Aspects

This chapter describes how to build your own aspect. It includes the following topics:

Section Description
Developing Simple Aspects on page 263 This topic describes how to create aspects that contain a

single transformation (named simple aspects). It describes all
kinds of simple aspects.

Understanding Aspect Lifetime and Scope on page 304 This topic explains the lifetime of aspects, which are instan-
tiated at build time, serialized, then deserialized at runtime
and executed.

Initializing Aspects on page 306 This topic discusses different techniques to initialize aspects.
Validating Aspect Usage on page 307 This topic shows how to validate that an aspect has been

applied to a valid target declaration.
Developing Composite Aspects on page 310 This topic describes how to create aspects that are

composed of several primitive transformations, using
advices and pointcuts.

Coping with Several Aspects on the Same
Target on page 321

This topic explains how to express aspect dependencies to
prevent issues that would otherwise happen if several
aspects are added to the same declaration.

Understanding Interception Aspects on page 324 This topic explains some details about the implementation
of interception aspects.

Understanding Aspect Serialization on page 326 This topic explains aspect serialization and how to
customize it.

Customizing Aspect Appearance in Visual
Studio on page 328

This topic shows how aspect can influence how they appear
in Visual Studio tooltips and code saving metrics.

Advanced on page 331 This topic discusses some advanced questions.

20.1. Developing Simple Aspects
In PostSharp, developing an aspect is as simple as deriving a primitive aspect class and overriding some special methods
named advice. Aspects encapsulate a transformation of an element of code (such as a method or a property), and advices
are the methods that are executed at runtime.
For instance, the effect of the aspect OnMethodBoundaryAspect is to wrap the target method into a try/catch/finally
construct, and the advices of this aspect are OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs), On-
Exception(MethodExecutionArgs) and OnExit(MethodExecutionArgs)

Developing Simple Aspects

263

By default, advices of primitive aspect types have an empty implementation, so the aspect has no effect until you override
at least one advice.

To develop a simple aspect:
1. Add PostSharp to your project. See Installing PostSharp Tools for Visual Studio on page 47 for details.
2. Create a new class and make it derive from one of the primitive aspect classes (see below).
3. Annotate the class with the custom attribute PSerializableAttribute. See Understanding Aspect Lifetime and

Scope on page 304 to understand why.
4. Override one of the aspect advice methods.

Aspect Classes
The following table gives a list of available primitive aspect classes. Every aspect class is described in greater detailed in
the class reference documentation.

Aspect Type Targets Description
OnMethodBoundaryAspect Methods Methods enhanced with an OnMethodBoundaryAspect are

wrapped by a try/catch/finally construct. This aspect provides
the advices OnEntry(MethodExecutionArgs),
OnSuccess(MethodExecutionArgs),
OnException(MethodExecutionArgs) and
OnExit(MethodExecutionArgs); these advices are invoked
directly from the transformed method, the return value, and the
exception (if applicable). This aspect is useful to implement
tracing or transaction handling, for instance.
For details, see Injecting Behaviors Before and After Method
Execution on page 266.

OnExceptionAspect Methods Methods enhanced with an OnExceptionAspect are wrapped by
a try/catch construct. This aspect provides the advice
OnException(MethodExecutionArgs); this advice is invoked from
the catch block. This aspect is useful to implement exception
handling policies. Contrarily to OnMethodBoundaryAspect, this
aspect lets you define the type of caught exceptions by
overriding the method GetExceptionType(MethodBase)

For details, see Handling Exceptions on page 271.
MethodInterceptionAspect Methods When a method is enhanced by a MethodInterceptionAspect,

all calls to this method are replaced by calls to
OnInvoke(MethodInterceptionArgs), the only advice of this
aspect type. This aspect is useful when the execution of target
method can be deferred (asynchronous calls), must be
dispatched on a different thread.
For details, see Intercepting Methods on page 285.

Developing Custom Aspects

264

Aspect Type Targets Description
LocationInterceptionAspect Fields,

Properties
When a field or a property is enhanced by a
LocationInterceptionAspect, all calls to its accessors are
replaced by calls to advices
OnGetValue(LocationInterceptionArgs) and
OnSetValue(LocationInterceptionArgs). Fields are
transparently replaced by properties. This aspect is useful to
implement functionalities that need to get or set the location
value, such as the observability design pattern
(INotifyPropertyChanged).

For details, see Intercepting Properties and Fields on page 290.
EventInterceptionAspect Events When an event is enhanced by an EventInterceptionAspect, all

calls to its add and remove semantics are replaced by calls to
advices OnAddHandler(EventInterceptionArgs) and
OnRemoveHandler(EventInterceptionArgs). Additionally, when
the event is fired, even of invoking directly the handlers that were
added to the event, the advice
OnInvokeHandler(EventInterceptionArgs) is called instead.
This aspect is useful to add functionalities to events, such as
implementing asynchronous events or materialized list of
subscribers.
For details, see Intercepting Events on page 295.

CompositionAspect Types This aspect introduces an interface into a type by composition.
The interface is introduced statically; the aspect method
GetPublicInterfaces(Type) should return the type of
introduced interfaces. However, the object implementing the
interface is created dynamically at runtime by the implementation
of the method CreateImplementationObject(AdviceArgs).

For details, see Introducing Interfaces on page 297.
CustomAttributeIntroductionAspect Any This aspect introduces a custom attribute on any element of

code. A custom attribute can be represented as a
CustomAttributeData or a ObjectConstruction.

For details, see Introducing Custom Attributes on page 299.
ManagedResourceIntroductionAspect Assemblies This aspect introduces a managed resource into the current

assembly.
For details, see Introducing Managed Resources on page 303.

ILocationValidationAspect Fields,
Properties,
Parameters

This aspect causes any new value assigned to its target to be
validated. If the aspect determines the value is invalid, an
exception is thrown. The aspects of the
PostSharp.Patterns.Contracts namespace are built on the top
of this interface aspect.
For details, see Contracts on page 157.

TIP
The implementation of aspects OnMethodBoundaryAspect and OnExceptionAspect is very efficient; they should be
preferred over other aspects whenever it makes sense.

Developing Simple Aspects

265

Using Aspect Interfaces
The primitive aspect classes listed above only exist for convenience. In reality, PostSharp only understands interfaces.
Every of these aspect classes implements a pair of interfaces. For instance, the class OnMethodBoundaryAspect
implements the interfaces IOnMethodBoundaryAspect and IMethodLevelAspectBuildSemantics.

The aspect classes are more convenient because they derive from MulticastAttribute, which extends
SystemAttribute with multicasting capability. See Adding Aspects to Multiple Declarations on page 187 for details.

If you do not need or want the capabilities of MulticastAttribute (for instance because the aspect is not used as a
custom attribute, see IAspectProvider), you can implement the aspect interface manually. An aspect class must
implement an interface derived from IAspect, and may implement an interface derived from IAspectBuildSemantics.
Please refer to the documentation of the aspect class to get information about the corresponding aspect interface.
Additionally to the aspect interface corresponding to an aspect class, you can define the following interfaces on aspect
classes:

Aspect Interface Description
IAspectProvider This interface defines a single method ProvideAspects(Object), returning a collection of

AspectInstance. The method allows an aspect to dynamically provide other aspects to the
weaver.

IInstanceScopedAspect By default, aspects have static scope: there is one instance of the aspect per target class.
Implementing the IInstanceScopedAspect makes the aspect instance-scoped: there will be
one instance of this aspect per instance of the target class.

20.1.1. Injecting Behaviors Before and After Method Execution
There are two ways to inject behaviors into methods. The first is the method decorator: it allows you to add instructions
before and after method execution. The second is method interception: the hook gets invoked instead of the method.
Decorators are faster than interceptors, but interceptors are more powerful. The current article covers decorators. For the
other aspect, see Intercepting Methods on page 285.
You may want to use method decorators to perform logging, monitor performance, initialize database transactions or any
one of many other infrastructure related tasks. PostSharp provides you with an easy to use framework for all of these tasks
in the form of the OnMethodBoundaryAspect.

Injection points
When you are decorating methods there are different locations that you may wish to inject functionality to. You may
want to perform a task prior to the method executing or just before it finishes execution. There are situations where you
may want to inject functionality only when the method has successfully executed or when it has thrown an exception. All
of these injection points are structured and available to you in the OnMethodBoundaryAspect.

To create a simple aspect that writes some text whenever a method enters, succeeds, or fails:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

Developing Custom Aspects

266

2. To add functionality prior to the execution of the target method, override the method and code the
functionality you desire.

[PSerializable]
public class LoggingAspect : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has been entered.", args.Method.Name);
}

}

3. Inject functionality immediately after the method executes by overriding the OnExit(MethodExecutionArgs)
method.

NOTE
It's important to remember that the OnExit(MethodExecutionArgs) method will execute every time that the
target method completes its execution regardless of if the target method completed successfully or threw an
exception.

public override void OnExit(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method has exited", args.Method.Name);
}

4. To add functionality that only executes when the target method has completed successfully, you will override
the OnSuccess(MethodExecutionArgs) method in your aspect. The OnSuccess(MethodExecutionArgs)
method will be executed every time that the target method completes successfully. If the target method
throws an exception OnSuccess(MethodExecutionArgs) will not execute.

public override void OnSuccess(MethodExecutionArgs args)
{

Console.WriteLine("The {0} method executed successfully.", args.Method.Name);
}

5. The final location that you can intercept requires you to override the OnException(MethodExecutionArgs)
method. As the name of the overrode method suggests, this is where you can inject functionality that should
execute when the target method throws and exception.

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine("An exception was thrown in {0}.", args.Method.Name);
}

The four methods (OnEntry(MethodExecutionArgs), OnExit(MethodExecutionArgs), OnSuccess(MethodExecution-
Args) and OnException(MethodExecutionArgs)) that you overrode are the locations that you are able to intercept
method execution. Between these four location you are able to implement many different infrastructure patterns with
minimal effort.

Accessing the method
As illustrated in the examples above, you can access information about the method being intercepted from the property
Method, which gives you a reflection object MethodBase. This object gives you access to parameters, return type,
declaring type, and other characteristics. In case of generic methods or generic types, Method gives you the proper
generic method instance, so you can use this object to get generic parameters.

Developing Simple Aspects

267

Accessing parameters
It's rare that you will intercept method execution and not interact with the parameters that were passed to the target
method. For example, when you implement method interception for logging you will probably want to log the
parameter values that were passed to the target method.
Each of the interception locations that were outlined earlier has access to that information. If you look at the On-
Entry(MethodExecutionArgs) method in your aspect you will see that it has a MethodExecutionArgs parameter. That
parameter is used for OnExit(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and OnException(Method-
ExecutionArgs) as well. The collection Arguments gives access to parameter values.

Let's modify the OnEntry(MethodExecutionArgs) method and include the parameter values in the log message.

To include argument values to the logged text:
1. Create a foreach loop to gather each of the parameter values in the Arguments property of the args

parameter.
2. In the loop concatenate the parameter values into a string.
3. Pass that string of argument values to the logging tool.

public override void OnEntry(MethodExecutionArgs args)
{

var argValues = new StringBuilder();
foreach (var argument in args.Arguments)
{

argValues.Append(argument.ToString()).Append(",");
}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}

NOTE
A production implementation of this aspect would need to take re-entrance into account. See the article
Logging on page 167 for a ready-made logging aspect.

It's also possible to modify the parameter values inside your aspect methods. All you need to do is modify the value of
the item in the Arguments collection. Remember that all items in the Arguments collection are object types so you will
need to be careful with how you change values. If the value you are modifying was originally a string, you will want to
ensure it stays a string type. It's especially true that when you change the parameter type in the OnEntry(Method-
ExecutionArgs) method you may cause the system to be unable to execute the target method due to a parameter type
mismatch.

NOTE
The only parameter types that you can modify are those defined as either out or ref. If you need to modify input
arguments, you should use Intercepting Methods on page 285.

Accessing the target objects
In combination with the parameters you will probably interact with the target code instance that the aspect is attached
to. The Instance property provides you with the instance of the object that the aspect is currently operating against. It
is an object type so you will need to cast it to the correct type to be able to interact with it. If you debug your aspect

Developing Custom Aspects

268

and that aspect doesn't make use of Instance, it will be set to null. It's also set to null if the target code is defined as
static.

Accessing the return value
Like target method parameters you also have access to the return value for those target methods. It's possible to both
read the return value as well as modify it. The return value can be found at ReturnValue in all four of the aspect
methods covered earlier.

public override void OnExit(MethodExecutionArgs args)
{

args.ReturnValue = false;
}

NOTE
If a target method is defined as void, the ReturnValue property will be set to null. ReturnValue is an object type so
you must be careful how you modify the return value with respect to the return value type of the target code.

Changing execution flow

Returning without executing the method
When your aspect is interacting with the target code, there are situations where you will need to alter the execution flow
behavior. For example, you may want to exit the execution of the target code at some point in the OnEntry(Method-
ExecutionArgs) advice. PostSharp offers this ability through the use of FlowBehavior.

public override void OnEntry(MethodExecutionArgs args)
{

if (args.Arguments.Count > 0 && args.Arguments[0] == null)
{

args.FlowBehavior = FlowBehavior.Return;
}

Console.WriteLine("The {0} method was entered with the parameter values: {1}",
args.Method.Name, argValues.ToString());

}

As you can see, all that is needed to exit the execution of the target code is setting the FlowBehavior property on the
MethodExecutionArgs to Return.

NOTE
Using flow control to exit the target code execution will return back to the code that called the target code. As a result,
you need to be considerate to the target code's return value. In the example above, the target code will always return
null. This may or may not be the behavior that you want. If it isn't, you can set the ReturnValue on the Method-
ExecutionArgs and that value will be returned from the target code.

Managing execution flow control when dealing with exceptions there are two primary situations that you need to
consider: re-throwing the exception and throwing a new exception.

Rethrowing an existing exception
To rethrow an existing exception, you will set the FlowBehavior property to RethrowException. Whatever exception
that was caught in the OnException(MethodExecutionArgs) advice will be rethrown to the code that is calling the
target code.

Developing Simple Aspects

269

public override void OnException(MethodExecutionArgs args)
{

if (args.Exception.GetType() == typeof(DivideByZeroException))
{

args.FlowBehavior = FlowBehavior.RethrowException;
}

}

Throwing a new exception
To throw a new exception you will have to perform two tasks. First you will need to assign the new exception to the
Exception property. This is the exception that will be thrown as part of the flow behavior. After that you will need to set
the FlowBehavior property to ThrowException.

public override void OnException(MethodExecutionArgs args)
{

if (args.Exception.GetType() == typeof(IndexOutOfRangeException))
{

args.Exception = new CustomArrayIndexException("This was thrown from an aspect",
args.Exception);

args.FlowBehavior = FlowBehavior.ThrowException;
}

}

NOTE
The remaining FlowBehavior enumeration value is Continue. In OnException(MethodExecutionArgs), this behavior
will not rethrow the caught exception. In OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and
OnExit(MethodExecutionArgs) the target code execution will continue with no interruption.

NOTE
The default FlowBehavior value for OnEntry(MethodExecutionArgs), OnSuccess(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs) is Continue. For OnException(MethodExecutionArgs) the default value is Rethrow-
Exception.

Sharing state between advices
When you are working with multiple advices on a single aspect, you will encounter the need to share state between
these advices. For example, if you have created an aspect that times the execution of a method, you will need to track
the starting time at OnEntry(MethodExecutionArgs) and share that with OnExit(MethodExecutionArgs) to calculate
the duration of the call.
To do this we use the MethodExecutionTag property on the MethodExecutionArgs parameter in each of the advices.
Because MethodExecutionTag is an object type, you will need to cast the value stored in it while retrieving it and before
using it.

[PSerializable]
public class ExecutionDurationAspect : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

args.MethodExecutionTag = Stopwatch.StartNew();
}

public override void OnExit(MethodExecutionArgs args)
{

var sw = (Stopwatch)args.MethodExecutionTag;
sw.Stop();

System.Diagnostics.Debug.WriteLine("{0} executed in {1} seconds", args.Method.Name,

Developing Custom Aspects

270

sw.ElapsedMilliseconds / 1000);
}

}

NOTE
The value stored in MethodExecutionTag will not be shared between different instances of the aspect. If the aspect is
attached to two different pieces of target code, each attachment will have its own unshared MethodExecutionTag for
state storage.

20.1.2. Handling Exceptions
Adding exception handlers to code requires the addition of try/catch statements which can quickly pollute code.
Exception handling implemented this way is also not reusable, requiring the same logic to be implemented over and over
where ever exceptions must be dealt with. Raw exceptions also present cryptic information and can often expose too much
information to the user.
PostSharp provides a solution to these problems by allowing custom exception handling logic to be encapsulated into a
reusable class, which is then easily applied as an attribute to all methods and properties where exceptions are to be dealt
with.
This topic contains the following sections:

• Intercepting an exception
• Specifying the type of handled exceptions
• Ignoring exceptions
• Replacing exceptions
• Displaying the method arguments on exception

Intercepting an exception
PostSharp provides the OnExceptionAspect class which is the base class from which exception handlers are to be
derived from.
The key element of this class is the OnException(MethodExecutionArgs) method: this is the method where the
exception handling logic (i.e. what would normally be in a catch statement) goes. A MethodExecutionArgs parameter is
passed into this method by PostSharp; it contains information about the exception.

To create an OnExceptionAspect class:
1. Derive a class from OnExceptionAspect.

2. Apply the PSerializableAttribute to the class.

3. Override OnException(MethodExecutionArgs) and implement your exception handling logic in this class.

The following snippet shows an example of an exception handler which watches for exceptions of any type, and then
writes a message to the console when an exception occurs:

[PSerializable]
public class PrintExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

Developing Simple Aspects

271

Once created, apply the derived class to all methods and/or properties for which the exception handling logic is to be
used, as shown in the following example:

class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException]
public void StoreName(string path)
{

File.WriteAllText(path, string.Format(“{0} {1}”, this.FirstName, this.LastName));
}

}

Here PrintException will output a message when an exception occurs in trying to write text to a file.

Alternatively the attribute can be applied to the class itself as shown below, in which case the exception handler will
handle exceptions for all methods and properties in the class:

[PrintExceptionAttribute(typeof(IOException))]
class Customer
{

.

.

.
}

See the section Adding Aspects to Multiple Declarations on page 187 for details about attribute multicasting.

Specifying the type of handled exceptions
The GetExceptionType(MethodBase) method can be used to return the type of the exception which is to be handled by
this aspect. Otherwise, all exceptions will be caught and handled by this class.

NOTE
The GetExceptionType(MethodBase) method is evaluated at build time.

In the following snippet, we updated the PrintExceptionAttribute aspect and added the possibility to specify from
the custom attribute constructor which type of exception should be traced.

[PSerializable]
public class PrintExceptionAttribute : OnExceptionAspect
{

Type type;

public PrintExceptionAttribute() : this(typeof(Exception))
{
}

public PrintExceptionAttribute (Type type)
: base()

{
this.type = type;

}

// Method invoked at build time.
// Should return the type of exceptions to be handled.
public override Type GetExceptionType(MethodBase method)
{

return this.type;
}

Developing Custom Aspects

272

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
}

}

Example:

class Customer
{

public string FirstName { get; set; }
public string LastName { get; set; }

[PrintException(typeof(IOException)]
public void StoreName(string path)
{

File.WriteAllText(path, string.Format(“{0} {1}”, this.FirstName, this.LastName));
}

}

NOTE
If the aspect needs to handle several types of exception, the GetExceptionType should return a common base type,
and the OnException implementation should be modified to dynamically handle different types of exception.

Ignoring exceptions
The FlowBehavior member of MethodExecutionArgs in the exception handler’s OnException(MethodExecutionArgs)
method, can be set to ignore an exception. Note however that ignoring exceptions is generally dangerous and not
recommended. In practice, it’s only safe to ignore exceptions in event handlers (e.g. to display a message in a WPF form)
and in thread entry points.
Exceptions can be ignored by setting the FlowBehavior to Return:

[PSerializable]
public class PrintAndIgnoreExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;

}
}

If a method returns a value then the ReturnValue member of args can be set to an object to return. For example,
consider the following GetDataLength method in Customer which returns the number of characters read from a file:

class Customer
{

[PrintException(typeof(IOException))]
public int GetDataLength(string path)
{

return File.ReadAllText(path).Length;
}

}

We can then modify the OnException(MethodExecutionArgs) method of PrintAndIgnoreExceptionAttribute to
return an integer with a value of -1:

Developing Simple Aspects

273

public override void OnException(MethodExecutionArgs args)
{

Console.WriteLine(args.Exception.Message);
args.FlowBehavior = FlowBehavior.Return;
args.ReturnValue = -1;

}

Replacing exceptions
Many times an exception must be exposed to the user, either by allowing the original exception to be rethrown, or by
throwing a new exception. This can be done by setting FlowBehavior as follows:

FlowBehavior.RethrowException: rethrows the original exception after the exception handler exits. This is
the default behavior for the OnException(MethodExecutionArgs) advise.

FlowBehavior.ThrowException: throws a new exception once the exception handler exits. This is useful
when details of the original exception should be hidden from the user or when a more meaningful
exception is to be shown instead. When throwing a new exception, a new exception object must be
assigned to the Exception member of MethodExecutionArgs. The following snippet shows the creation of
a new BusinessExceptionAttribute which throws a BusinessException containing a description of the
cause:

[PSerializable]
public sealed class BusinesssExceptionAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs args)
{

.

.

.
args.FlowBehavior = FlowBehavior.ThrowException;
args.Exception = new BusinessException("Bad Arguments", new Exception("One or more arguments were null. Use the id " + guid.ToString() + " for more information"));

}
}

class BusinessException : Exception
{

public BusinessException(string message, Exception innerException) : base(message, innerException)
{
}

}

Displaying the method arguments on exception
When an exception is thrown, it can be useful to view and display the parameter values that were passed into the
method where the exception occurred. These values can be retrieved by iterating through the Arguments property of
the args parameter of the OnException(MethodExecutionArgs)method. In the following snippet, OnException(Method-
ExecutionArgs) has been modified to iterate through all exception values, and to concatenate them into a string. If a
null value is encountered, then the code embeds the word null into the string. This string is then displayed as the
message of the NullReferenceException which is rethrown:

public override void OnException(MethodExecutionArgs args)
{

string parameterValues = "";

foreach (object arg in args.Arguments)
{

if (parameterValues.Length > 0)
{

parameterValues += ", ";
}

if (arg != null)
{

parameterValues += arg.ToString();

Developing Custom Aspects

274

}
else
{

parameterValues += "null";
}

}

Console.WriteLine(“Exception {0} in {1}.{2} invoked with arguments {3}”, args.Exception.GetType().Name, args.Method.DeclaringType.FullName, args.Method.Name, parameterValues);
}

}

NOTE
The Arguments field of args cannot be directly viewed in the debugger. The Arguments field must be referenced by
another object in order to be viewable in the debugger.

20.1.3. Injecting Behaviors into Async Methods
Async methods are methods with the async keyword in C#. Unlike normal methods, execution of async methods can be
paused and resumed. Execution is paused when the method depends on a task that is being executed asynchronously, and
is resumed when the dependent task has completed. An async method provides a convenient way to do potentially long-
running work without blocking the caller's thread.
Async methods return a value of the Task type. At build time, the compiler performs a complex transformation of the code.
The original async logic is moved to a different type called here the state machine type, and the original method body is
replaced by just a few lines of code instantiated this state machine.
By default, all aspects applied on an async method are actually applied to the method instantiating the state machine.
However, there are times when you want to actually add an aspect to the state machine. We will see how this is possible
using the OnMethodBoundaryAspect aspect. For a more general information about using OnMethodBoundaryAspect in non-
async methods, see Injecting Behaviors Before and After Method Execution on page 266.
There are two options when applying OnMethodBoundaryAspect to an async method. The first option is to apply the aspect
to the method that instantiates and returns the task instance. The second option is to apply the aspect to the actual code
that implements the logic inside the task. When using the second option you can also inject behaviors before and after your
await statements.

This topic contains the following sections:
• Applying the aspect to the method instantiating the async task on page 275
• Applying the aspect to the async task itself on page 277
• Adding behaviors around the "await" statement on page 279

Applying the aspect to the method instantiating the async task
You can control how the aspect is applied to the async method by setting the boolean ApplyToStateMachine property.
Set this property to false to apply the aspect only to the code instantiating the async task. You can set the property in
the constructor if you don't want to set it explicitly every time the aspect is used.
In the following procedure, we demonstrate how to inject behaviors into the method instantiating the async task. For
this purpose, we create a simplified caching aspect that caches the result of the async method. This aspect can be
applied to any async method returning Task<object>. For example, to the TestCaching method shown below:

public async Task<object> TestCaching()
{

await Task.Wait(1000); // Some long-running operation.
return await Task.FromResult(new {Name = "Test object"});

}

Developing Simple Aspects

275

To inject behaviors into the method instantiating the async task:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

2. Set the ApplyToStateMachine property to false in your constructor.

[PSerializable]
public class CacheTaskResultAttribute : OnMethodBoundaryAspect
{

public CacheTaskResultAttribute()
{

ApplyToStateMachine = false;
}

}

NOTE
The default value of the ApplyToStateMachine property is false unless the OnYield(MethodExecutionArgs)
or OnResume(MethodExecutionArgs) advice is implemented. However, PostSharp will emit a warning
whenever OnMethodBoundaryAspect is applied to an async method without setting the ApplyToState-
Machine property.

3. Implement some of the advice methods of the OnMethodBoundaryAspect class, according to your
requirements. For more information about these advice methods, see Injecting Behaviors Before and After
Method Execution on page 266.
For our CacheAttribute aspect, we need to implement two advises: OnEntry(MethodExecutionArgs) and On-
Success(MethodExecutionArgs).

[PSerializable]
public class CacheTaskResultAttribute : OnMethodBoundaryAspect
{

public CacheTaskResultAttribute()
{

ApplyToStateMachine = false;
}

public override void OnEntry(MethodExecutionArgs args)
{

object cachedValue = MemoryCache.Default[args.Method.Name];
if (cachedValue != null)
{

args.ReturnValue = Task.FromResult(cachedValue);
args.FlowBehavior = FlowBehavior.Return;

}
}

public override void OnSuccess(MethodExecutionArgs args)
{

var task = (Task<object>) args.ReturnValue;
args.ReturnValue =

task.ContinueWith(
t =>
{

MemoryCache.Default[args.Method.Name] = t.Result;
return t.Result;

});
}

}

Developing Custom Aspects

276

4. Apply your custom attribute to the target methods. Below you can see the [Cache] attribute applied to the
TestCaching method.

[Cache]
public async Task<object> TestCaching()
{

await Task.Wait(1000); // Some long-running operation.
return await Task.FromResult(new {Name = "Test object"});

}

NOTE
You can also set the ApplyToStateMachine property value when applying the attribute to a method, for
instance using the syntax [MyAspect(ApplyToStateMachine = false)]. This can be useful if it makes
sense to apply this aspect to both the state machine or the instantiation method.

Thanks to the aspect, whenever the TestCaching method is called, the CacheAttribute.OnEntry method executes first.
It checks whether the result value is already stored in the cache. If the value already exists, then a new task is created
from this value and immediately returned back to the caller. Otherwise, the execution continues normally and a new task
instance is created to run our async method.
The CacheAttribute.OnSuccess method is called before the newly created async task is returned back to the caller. The
aspect's method creates a new continuation task and returns it back to the caller instead of the original one. Once the
original task completes, the continuation added by the aspect stores the resulting value in cache. Afterwards, the
original caller proceeds with processing the task's result.

Applying the aspect to the async task itself
In many cases, we need to inject behaviors into the code of the async task itself. You can accomplish this by setting the
OnMethodBoundaryAspectApplyToStateMachine property to true.

We'll see how to use this feature to create an aspect that measures the execution time of a method. In this section, we
will create a simple profiling aspect and show how to apply it correctly to the async methods.
To test the profiling aspect, we will measure the execution time of the TestProfiling example method, shown below.
The call to Thread.Sleep represents the work performed by the method. This is the time we want to measure. The call
to Task.Delay represents the work performed outside the method, for example the asynchronous call to a web service
or a database server.

public async Task TestProfiling()
{

await Task.Delay(1000);
Thread.Sleep(1000);

}

To inject behaviors into the async task itself:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

[PSerializable]
public class ProfilingAttribute : OnMethodBoundaryAspect
{
}

Developing Simple Aspects

277

2. Implement some of the advice methods of the OnMethodBoundaryAspect class, according to your
requirements. For more information about these advice methods, see Injecting Behaviors Before and After
Method Execution on page 266.
For our profiling aspect, we need to implement two advices: OnEntry(MethodExecutionArgs) and On-
Exit(MethodExecutionArgs).

[PSerializable]
public class ProfilingAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Stopwatch sw = Stopwatch.StartNew();
args.MethodExecutionTag = sw;

}

public override void OnExit(MethodExecutionArgs args)
{

Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Stop();
Console.WriteLine("Method {0} executed for {1}ms.",

args.Method.Name, sw.ElapsedMilliseconds);
}

}

3. Apply your custom attribute to the target methods. Set the ApplyToStateMachine property to true when
applying the attribute to async methods. Below you can see the [Profiling] attribute applied to the Test-
Profiling method.

[Profiling(ApplyToStateMachine = true)]
public async Task TestProfiling()
{

await Task.Delay(1000);
Thread.Sleep(1000);

}

NOTE
You can set the ApplyToStateMachine property in the constructor if you don’t want to set it explicitly every
time the aspect is used.

Whenever the TestProfiling method is called, it creates a new async task instance. At some later point, the task starts
executing and immediately the ProfilingAttribute.OnEntry method is invoked. The method starts the stopwatch and
stores it for the future use. Then the execution of the async task continues.
The ProfilingAttribute.OnExit method is called just before the async task completes. This method stops measuring
the time and outputs the result to the console.
This program produces the following output:

Method TestProfiling executed for 2044ms.

As you can see, the output shows that we're not only measuring the execution time of the user code in the Test-
Profiling method, but also the time spent waiting for the external tasks to complete. The next section of this article
will show how the ProfilingAttribute class can be improved to measure only the time spent inside the Test-
Profiling method.

Developing Custom Aspects

278

Adding behaviors around the "await" statement
When applying the aspect to the async task itself, you can also inject behaviors before and after the await statements in
that task. To achieve that, you need to override the OnYield(MethodExecutionArgs) and OnResume(MethodExecution-
Args) methods of the OnMethodBoundaryAspect class.

The OnYield(MethodExecutionArgs) method is invoked after the async task get paused and yields the control flow to
the calling thread, as the result of the await statement.

The OnResume(MethodExecutionArgs) method is invoked when the async task resumes execution at the point after the
await statement.

NOTE
Implementing OnYield(MethodExecutionArgs) or OnResume(MethodExecutionArgs) method also automatically sets
the default value of ApplyToStateMachine property to true and suppresses the warning generated by PostSharp when
the ApplyToStateMachine property is not set.

In the next steps we will add the OnYield and OnResume overrides to our ProfilingAttribute class. This will allow us to
pause the stopwatch when the async method execution is paused, and to resume the stopwatch when the async
method execution is resumed.

To inject behaviors around the "await" statement:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute. For this example, we will reuse the ProfilingAttribute class from the previous
section.

2. Override the OnYield(MethodExecutionArgs) method to add functionality at the point where the async task is
paused and yields the control flow to the calling thread.
The following code snippet uses OnYield(MethodExecutionArgs) method to pause the stopwatch when the
execution of the async method is paused.

public override void OnYield(MethodExecutionArgs args)
{

Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Stop();

}

3. Override the OnResume(MethodExecutionArgs) method to add functionality at the point where the async task
resumes its execution after the await statement. This method is invoked when another async task has
completed and the control flow has returned to the original task right after the await statement.

The following code snippet uses OnYield(MethodExecutionArgs) method to resume the stopwatch when the
execution of the async method is resumed.

public override void OnResume(MethodExecutionArgs args)
{

Stopwatch sw = (Stopwatch) args.MethodExecutionTag;
sw.Start();

}

Developing Simple Aspects

279

4. Apply your custom attribute to the target methods. Below you can see the [Profiling] attribute applied to
the TestProfiling method.

[Profiling]
public async Task TestProfiling()
{

await Task.Delay(1000);
Thread.Sleep(1000);

}

During the code execution, the stopwatch will start upon entering the TestProfiling method. It will stop before the
await statement and resume when the task awaiting is done. Finally, the time measuring is stopped again before exiting
the TestProfiling method and the result is written to the console.

Method ProfilingTest executed for 1007ms.

20.1.4. Injecting Behaviors into Iterators
Iterator methods are methods that can return several values. In C#, values are produced using the yield return statement.
Iterators return a value of type IEnumerable or IEnumerator. At build time, the compiler performs a complex transfor-
mation of the code. The original iterator logic is moved to a different type implementing the IEnumerator interface, and the
original method body is replaced by just a few lines of code instantiated this class.
By default, all aspects applied on an iterator method are actually applied to the method instantiating the iterator class.
However, there are times when you want to actually add an aspect to the iterator itself. We will see how this is possible
using the OnMethodBoundaryAspect aspect. For a more general information about using OnMethodBoundaryAspect in non-
async methods, see Injecting Behaviors Before and After Method Execution on page 266.
You have two options when applying OnMethodBoundaryAspect to an iterator method. The first option is to apply the
aspect to the method that only creates and returns the iterator instance. The second option is to apply the aspect to the
actual code that implements the logic inside the iterator. When using the second option you can also inject behaviors
before and after your yield return statements and access the current yield value.

This topic contains the following sections:
• Applying the aspect to the method instantiating the iterator on page 280
• Applying the aspect to the iterator itself on page 282
• Adding behaviors around the "yield return" statement on page 283

Applying the aspect to the method instantiating the iterator
You can control how the aspect is applied to the iterator by setting the boolean ApplyToStateMachine property. Set this
property to false on your aspect to apply the aspect only to the code instantiating the iterator. You can set the property
in the constructor if you don’t want to set it explicitly every time the aspect is used.
In the following procedure, we demonstrate how to inject behaviors into the method instantiating the iterator. For this
purpose, we create a simplified caching aspect that stores all the values returned by iterator as a single array in cache.
This aspect can be applied to any iterator returning IEnumerable.

To inject behaviors into the method instantiating the iterator:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

Developing Custom Aspects

280

2. Set the ApplyToStateMachine property to false in your constructor.

[PSerializable]
public class CacheAttribute : OnMethodBoundaryAspect
{

public CacheResultAttribute()
{

ApplyToStateMachine = false;
}

}

NOTE
The default value of the ApplyToStateMachine property is false unless the OnYield(MethodExecutionArgs)
or OnResume(MethodExecutionArgs) advice is implemented. However, PostSharp will emit a warning
whenever OnMethodBoundaryAspect is applied to an iterator without setting the ApplyToStateMachine
property.

3. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements.
For more information about the corresponding virtual methods, see Injecting Behaviors Before and After
Method Execution on page 266.
The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnSuccess(Method-
ExecutionArgs) methods for the CacheAttribute class.

[PSerializable]
public class CacheAttribute : OnMethodBoundaryAspect
{

public CacheAttribute()
{

ApplyToStateMachine = false;
}

public override void OnEntry(MethodExecutionArgs args)
{

object cachedValue = MemoryCache.Default[args.Method.Name];
if (cachedValue != null)
{

args.ReturnValue = cachedValue;
args.FlowBehavior = FlowBehavior.Return;

}
}

public override void OnSuccess(MethodExecutionArgs args)
{

object[] elements = ((IEnumerable) args.ReturnValue).OfType<object>().ToArray();
MemoryCache.Default[args.Method.Name] = elements;
args.ReturnValue = elements;

}
}

Developing Simple Aspects

281

4. Apply your custom attribute to the target methods. Below you can see the [Cache] attribute applied to the
TestCaching method.

[Cache]
public IEnumerable TestCaching()
{

yield return 1;
yield return 2;
yield return 3;

}

NOTE
You can also set the ApplyToStateMachine property value when applying the attribute to a method, for
instance using the syntax [MyAspect(ApplyToStateMachine = false)]. This can be useful if it makes
sense to apply this aspect to both the state machine or the instantiation method.

Thanks to the aspect, whenever the TestCaching method is called, the CacheAttribute.OnEntry method executes first.
It checks whether the result value is already stored in the cache. If the value already exists, then it is immediately
returned back to the caller. Otherwise, the execution continues normally and a new iterator instance is created.
The CacheAttribute.OnSuccess method is called before the newly created iterator instance is returned back to the
caller. The aspect's method enumerates all the iterator values using ToArray method and stores the resulting array in
cache. The array is also returned to the caller instead of the original iterator instance.

Applying the aspect to the iterator itself
In many cases it can be useful to inject behavior into the user code of the iterator implementation itself. You can
accomplish this by setting the ApplyToStateMachine property to true on your OnMethodBoundaryAspect.

For example, you may want to write a log entry each time the enumeration of the iterator begins and ends instead of
logging only the creation of the iterator instance. In this section, we will create a simple logging aspect and show how
to apply it correctly to iterators.

To inject behaviors into the iterator itself:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

[PSerializable]
public class LogIteratorAttribute : OnMethodBoundaryAspect
{
}

Developing Custom Aspects

282

2. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements.
For more information about the corresponding virtual methods, see Injecting Behaviors Before and After
Method Execution on page 266.
The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnSuccess(Method-
ExecutionArgs) methods for the LogIteratorAttribute class.

[PSerializable]
public class LogIteratorAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("The enumeration of {0} started.", args.Method.Name);
}

public override void OnSuccess(MethodExecutionArgs args)
{

Console.WriteLine("The enumeration of {0} finished.", args.Method.Name);
}

}

3. Apply your custom attribute to the target iterator methods and set the ApplyToStateMachine property to
true. Below you can see the [LogIterator] attribute applied to the TestLogging method.

[LogIterator(ApplyToStateMachine = true)]
public IEnumerable<int> TestLogging()
{

yield return 1;
yield return 2;
yield return 3;

}

NOTE
You can set the ApplyToStateMachine property in the constructor if you don’t want to set it explicitly every
time the aspect is used.

Whenever the TestLogging method is called, it creates a new iterator instance. Then the caller starts the enumeration of
the iterator and immediately the LogIteratorAttribute.OnEntry method is invoked. The method writes the first log
entry and the enumeration continues.
The LogIteratorAttribute.OnSuccess method is called after the enumeration of the iterator has completed. The
method writes the second log entry and the control is given back to the caller.
The snippet below shows the enumeration of our sample iterator and the output written to the console.

foreach (int n in TestLogging()) Console.WriteLine(n);

The enumeration of TestLogging started.
1
2
3
The enumeration of TestLogging finished.

Adding behaviors around the "yield return" statement
When applying the aspect to the iterator itself, you can also inject behaviors before and after the yield return
statements in that iterator. To achieve that, you need to override the OnYield(MethodExecutionArgs) and On-
Resume(MethodExecutionArgs) methods of the OnMethodBoundaryAspect class.

Developing Simple Aspects

283

The OnYield(MethodExecutionArgs) method is invoked after the iterator yields the control flow, as the result of the
yield return statement. In this method you can also access and modify the current yield value by using the Yield-
Value property.

The OnResume(MethodExecutionArgs) method is invoked when the iterator resumes execution at the point after the
yield return statement.

NOTE
Note, that implementing OnYield(MethodExecutionArgs) or OnResume(MethodExecutionArgs) method also
automatically sets the default value of ApplyToStateMachine property to true and quiets the warning generated by
PostSharp.

In the next steps we will create a sample aspect that counts the number of the not-null elements returned by the
iterator and writes the result to the console.

To inject behaviors around the "yield return" statement:
1. Create an aspect class and inherit OnMethodBoundaryAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

[PSerializable]
public class NotNullCounterAttribute : OnMethodBoundaryAspect
{
}

2. Override some of the virtual methods of the OnMethodBoundaryAspect class, according to your requirements.
For more information about the corresponding virtual methods, see Injecting Behaviors Before and After
Method Execution on page 266.
The following snippet shows the overrides of OnEntry(MethodExecutionArgs) and OnExit(MethodExecution-
Args) methods for the NotNullCounterAttribute class.

[PSerializable]
public class NotNullCounterAttribute : OnMethodBoundaryAspect
{

public override void OnEntry(MethodExecutionArgs args)
{

// Initialize and store the couner for use in other method.
args.MethodExecutionTag = 0;

}

public override void OnExit(MethodExecutionArgs args)
{

Console.WriteLine("{0} returned {1} not-null values.", args.Method.Name, args.MethodExecutionTag);
}

}

Developing Custom Aspects

284

3. Override the OnYield(MethodExecutionArgs) method to add functionality at the point where the iterator
yields the next value. This method is invoked when the execution of the iterator is paused and the caller takes
over the control flow.
The following code snippet shows the OnYield(MethodExecutionArgs) method override for the NotNull-
CounterAttribute class.

public override void OnYield(MethodExecutionArgs args)
{

if (args.YieldValue != null)
{

args.MethodExecutionTag = ((int) args.MethodExecutionTag) + 1;
}

}

4. Apply your custom attribute to the target methods. Below you can see the [NotNullCounter] attribute
applied to the TestLogging method.

[NotNullCounter]
public IEnumerable<string> TestLogging()
{

yield return "One";
yield return null;
yield return "Two";

}

Thanks to the aspect, we will initialize the counter when the enumeration of the TestLogging starts, increase the
counter each time a not-null value is returned, and finally write the result when the enumeration completes.
The snippet below shows the enumeration of our sample iterator and the output written to the console.

foreach (string s in TestLogging()) Console.WriteLine(s ?? "<null>");

One
<null>
Two
TestLogging returned 2 not-null values.

20.1.5. Intercepting Methods
It is often useful to be able to intercept the invocation of a method and invoke your own hook in its place. Common use
cases for this capability include dispatching the method execution to a different thread, asynchronously executing the
method at a later time, and retrying the method call when exception is thrown.
PostSharp addresses these needs with the MethodInterceptionAspect aspect class which intercepts the invocation of a
method before the method is executed. It also allows you to invoke the original method and access its arguments and
return value.
The current article covers method interception, for another approach to injecting behaviors into methods, see Injecting
Behaviors Before and After Method Execution on page 266.
This topic contains the following sections:

• Intercepting a method call on page 286
• Accessing the identity of the intercepted method on page 287
• Accessing the arguments and the return value on page 288
• Accessing the target objects on page 289

Developing Simple Aspects

285

Intercepting a method call
Consider the following CustomerService class which has methods to load and save customer entities and relies on calls
to a database or a web-service.

public class CustomerService
{

public void Save(Customer customer)
{

// Database or web-service call.
}

}

Occasionally, the connection to the underlying store may become unreliable and the application user is presented with
the error message. To improve the user experience you may want to retry the failing operation several times before
displaying the error message. In the following steps we'll create a method interception class which can be applied to
repository methods and will retry the invocation whenever an exception is thrown by the original method.

To create an aspect that retries a method call on exception:
1. Create an aspect class and inherit MethodInterceptionAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

public class RetryOnExceptionAttribute : MethodInterceptionAspect
{
}

2. Define a property MaxRetries and set its default value to 3 in the constructor.

public int MaxRetries { get; set; }

public RetryOnExceptionAttribute()
{

this.MaxRetries = 3;
}

3. Override the OnInvoke(MethodInterceptionArgs) method.

public override void OnInvoke(MethodInterceptionArgs args)
{

base.OnInvoke(args);
}

Developing Custom Aspects

286

4. Edit the OnInvoke method to catch the exception and retry the operation. Use base.OnInvoke() to invoke the
intercepted method.
The complete aspect code is as follows:

[PSerializable]
public class RetryOnExceptionAttribute : MethodInterceptionAspect
{

public int MaxRetries { get; set; }

public override void OnInvoke(MethodInterceptionArgs args)
{

int retriesCounter = 0;

while (true)
{

try
{

base.OnInvoke(args);
return;

}
catch (Exception e)
{

retriesCounter++;
if (retriesCounter > this.MaxRetries) throw;

Console.WriteLine(
"Exception during attempt {0} of calling method {1}.{2}: {3}",
retriesCounter, args.Method.DeclaringType, args.Method.Name, e.Message);

}
}

}
}

NOTE
Calling base.OnInvoke() is equivalent to calling args.Proceed().

5. Apply the [RetryOnException] custom attributes to all methods where the behavior is needed.

In the following snippet, this aspect is applied to the CustomerService.Save method:

public class CustomerService
{

[RetryOnException(MaxRetries = 5)]
public void Save(Customer customer)
{

// Database or web-service call.
}

}

Whenever the CustomerService.Save method will be invoked, the RetryOnExceptionAttribute.OnInvoke method will
be called instead. It will invoke the original method and retry if necessary.

Accessing the identity of the intercepted method
As illustrated in the example above, you can access information about the method being intercepted from the property
MethodInterceptionArgsMethod, which gives you a reflection object MethodBase. This object gives you access to
parameters, return type, declaring type, and other characteristics. In case of generic methods or generic types, Method-
InterceptionArgsMethod gives you the proper generic method instance, so you can use this object to get generic
parameters.

Developing Simple Aspects

287

Accessing the arguments and the return value
An implementation of MethodInterceptionAspect can read and modify the arguments of the intercepted method
thanks to the MethodInterceptionArgsArguments property, and the return value thanks to the MethodInterception-
ArgsReturnValue property.

For example, consider a UserService class with a method that returns user permissions. The method would normally
return null if no permissions have been assigned to this user.

public class UserService
{

public Permissions GetPermissions(string username)
{

// Database or web-service call.
}

}

If the given user has no assigned permission, instead of returning null, we would like the method to return the
permissions assigned to the user named DefaultUser.
We can implement these requirements using an aspect derived from MethodInterceptionAspect. The aspect first
invokes the original method, then it checks whether it has returned a null value. If the value is null, the method is
invoked again but with the arguments replaced by the default values.

To create an aspect that uses default arguments when a method returns null:
1. Create an aspect class and inherit MethodInterceptionAspect. Annotate the class with the [PSerializable-

Attribute] custom attribute.

[PSerializable]
public class RetryIfNullAttribute : MethodInterceptionAspect
{
}

2. Add a field defaultArguments to the class and set this field from the constructor.

private object[] defaultArguments;

public RetryIfNullAttribute(params object[] defaultArguments)
{

this.defaultArguments = defaultArguments;
}

3. Override the OnInvoke(MethodInterceptionArgs) method.

public override void OnInvoke(MethodInterceptionArgs args)
{

base.OnInvoke(args);
}

Developing Custom Aspects

288

4. Edit the OnInvoke method to implement the aspect logic. Check whether the MethodInterception-
ArgsReturnValue property is null return value, and set the items of the MethodInterceptionArgsArguments
property. Finally, invoke the intercepted method a second time by calling base.OnInvoke().

The complete aspect code is as follows:

[PSerializable]
public class RetryIfNullAttribute : MethodInterceptionAspect
{

private object[] defaultArguments;

public RetryIfNullAttribute(params object[] defaultArguments)
{

this.defaultArguments = defaultArguments;
}

public override void OnInvoke(MethodInterceptionArgs args)
{

base.OnInvoke(args);

if (args.ReturnValue == null)
{

Console.WriteLine(
"The method {0}.{1} has returned a null value." +
" Retrying with the default arguments...",
args.Method.DeclaringType, args.Method.Name);

for (int i = 0; i < args.Arguments.Count && i < this.defaultArguments.Length; i++)
{

args.Arguments[i] = this.defaultArguments[i];
}

base.OnInvoke(args);
}

}
}

5. Apply this method interception aspect as an attribute to all methods where the implemented logic is needed.
In the following snippet, the aspect is applied to the UserService.GetPermissions method:

public class UserService
{

[RetryIfNull("DefaultUser")]
public Permissions GetPermissions(string username)
{

// database or web-service call
}

}

Thanks to the aspect, whenever the UserService.GetPermissions method is invoked, the RetryIfNullAttribute.On-
Invoke method will be called instead. The OnInvoke method will then invoke the original GetPermissions method. If it
returns null for the provided username, then the method will be invoked again, but this time with the value Default-
Value for the username parameter.

Accessing the target objects
In combination with the parameters you will probably interact with the target code instance that the aspect is attached
to. The Instance property provides you with the instance of the object that the aspect is currently operating against. It
is an object type so you will need to cast it to the correct type to be able to interact with it. If you debug your aspect
and that aspect doesn't make use of Instance, it will be set to null. It's also set to null if the target code is defined as
static.

Developing Simple Aspects

289

20.1.6. Intercepting Properties and Fields
In .NET, both fields and properties are "things" that can be set and get. You can intercept get and set operations using the
LocationInterceptionAspect. It makes it possible to develop useful aspects, such as validation, filtering, change tracking,
change notification, or property virtualization (where the property is backed by a registry value, for instance).
This topic contains the following sections:

• Intercepting Get operations on page 290
• Intercepting Set operations on page 291
• Getting and setting the underlying property on page 292
• Intercepting fields on page 293
• Getting the property or property being accessed

Intercepting Get operations
In this example, we will see how to create an aspect that filters the value read from a field or property.

To create an aspect that filters the value read from a field or property
1. Create an aspect that inherits from LocationInterceptionAspect and add the custom attribute

[PSerializableAttribute].

2. Override the OnGetValue(LocationInterceptionArgs) method.

[PSerializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{

public override void OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);
}

}

3. Calling base.OnGetValue actually retrieves the value from the underlying field or property, and populates the
Value property. Add some code to check if the property currently is set to null If the current value is null, we
want to return a predefined value. To do this we can set the Value property. Any time this property is
requested, and it is set to null, the value "foo" will be returned.

public override void OnGetValue(LocationInterceptionArgs args)
{

base.OnGetValue(args);

if (args.Value == null)
{

args.Value = "foo";
}

}

Developing Custom Aspects

290

4. Now that you have a complete getter interception aspect written you can attach it to the target code. Simply
add an attribute to either properties or fields to have the interception attached.

public class Customer
{

[StringChecker]
private readonly string _address;

public Customer(string address)
{

_address = address;
}
[StringChecker]
public string Name { get; set; }
public string Address { get { return _address; } }

}

NOTE
Adding aspects to target code one property or field at a time can be a tedious process. There are a number
of techniques in the article Adding Aspects to Multiple Declarations on page 187 that explain how to add
aspects en mass.

5. Now when you create an instance of a customer and immediately try to access the Name and Address values
the get request will be intercepted and null values will be returned as "foo".

class Program
{

static void Main(string[] args)
{

var customer = new Customer("123 Main Street");
Console.WriteLine("Address: {0}", customer.Address);
Console.WriteLine("Name: {0}", customer.Name);
Console.ReadKey();

}
}

Property and field interception is a simple and seamless task. Once you have intercepted your target you can act on the
target or you can allow the original code to execute.

Intercepting Set operations
The previous section showed how to intercept a get accessor. Intercepting a set accessor is accomplished in a similar
manner by implementing OnSetValue(LocationInterceptionArgs) in the LocationInterceptionAspect.

Developing Simple Aspects

291

The following snippet shows the addition of OnSetValue(LocationInterceptionArgs) to the StringCheckerAttribute
example:

[PSerializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{
public override void OnGetValue(LocationInterceptionArgs args)
{
base.OnGetValue(args);
}

public override void OnSetValue(LocationInterceptionArgs args)
{
base.OnSetValue(args);
}
}

When applied to a property with a set operator, OnSetValue(LocationInterceptionArgs) will intercept the set
operation. In the Customer example shown below, OnSetValue(LocationInterceptionArgs) will be called whenever
the Name property is set:

public class Customer
{

.

.

.
[StringChecker]
public string Name { get; set; }
}

The SetNewValue(Object) method of LocationInterceptionArgs can be used instead of base.OnSetValue() to pass
a different value in for the property. For example, OnSetValue(LocationInterceptionArgs) could be used to check for
a null string, and then change the string to a non-null value:

[PSerializable]
public class StringCheckerAttribute : LocationInterceptionAspect
{

.

.

.
public override void OnSetValue(LocationInterceptionArgs args)
{
if (args.Value == null)
{
args.Value = “Empty String";
}

args.ProceedSetValue();

}
}

Getting and setting the underlying property
PostSharp provides a mechanism to check a property’s underlying value via the LocationInterceptionArgsGet-
CurrentValue method. This can be useful to check the current property value when a setter is called and then take
some appropriate action.
For example, the following snippet shows a modified OnSetValue(LocationInterceptionArgs) method which gets the
current underlying property value and compares the (new) value passed into the setter against the current value. If
current and new value don’t match then some message is written:

Developing Custom Aspects

292

public override void OnSetValue(LocationInterceptionArgs args)
{

//get the current underlying value
string existingValue = (string)args.GetCurrentValue();

if (((existingValue==null) && (args.Value != null)) || (!existingValue.Equals(args.Value)))
{

Console.WriteLine(“Value changed.”);
args.ProceedSetValue();

}
}

NOTE
GetCurrentValue will call the underlying property getter without going through OnGetValue(LocationInterception-
Args). If several aspects are applied to the property (and/or to the property setter), GetCurrentValue will go through
the next aspect in the chain of invocation.

PostSharp also provides a mechanism to set the underlying property in a getter via the SetNewValue(Object) method
of LocationInterceptionArgs. This could be used for example, to ensure that a default value is assigned to the
underlying property if there is currently no value. The following snippet shows a modified OnGetValue(Location-
InterceptionArgs) method which gets the current underlying value, and sets a default value if the current value is null:

public override void OnGetValue(LocationInterceptionArgs args)
{

object o = args.GetCurrentValue();
if (o == null)
{

args.SetNewValue("value not set");
}

base.OnGetValue(args);
}

Intercepting fields
One benefit to implementing a LocationInterceptionAspect is that it can be applied directly to fields, allowing for
reads and writes to those fields to be intercepted, just like with properties.
Applying a LocationInterceptionAspect implementation to a field is simply a matter of setting it as an attribute on a
field, just as it was done with a property:

public class Customer
{

.

.

.
[StringChecker]
public string name;
}

With the attribute applied to the name field, all attempts to get and set that field will be intercepted by StringChecker
in its OnGetValue(LocationInterceptionArgs) and OnSetValue(LocationInterceptionArgs) methods.

Note that when a LocationInterceptionAspect is added to a field, the field is replaced by a property of the same field
and visibility. The field itself is renamed and made private.

Developing Simple Aspects

293

Getting the property or property being accessed
Information about the property or field being intercepted can be obtained through the LocationInterceptionArgs via
its Location property. The type of this property, LocationInfo, can represent a FieldInfo, a PropertyInfo, or a
ParameterInfo (although LocationInterceptionAspect cannot be added to parameters).

One use for this is to reflect the property name whenever a property is changed. In the following example, we have an
Entity class that implements INotifyPropertyChanged and a public OnPropertyChanged method which allows notifi-
cations to be made whenever a property is changed. The Customer class has been modified to derive from Entity.

class Entity : INotifyPropertyChanged
{

public event PropertyChangedEventHandler PropertyChanged;

public void OnPropertyChanged(string propertyName)
{

if (PropertyChanged != null)
PropertyChanged(this, new PropertyChangedEventArgs(propertyName));

}
}

class Customer : Entity
{

public string Name { get; set; }
}

With the ability to invoke an OnPropertyChanged event, we can create a LocationInterceptionAspect which invokes
this event when setting a value and pass in the property name from the underlying PropertyInfo object:

[PSerializable]
public class NotifyPropertyChangedAttribute : LocationInterceptionAspect
{

public override void OnSetValue(LocationInterceptionArgs args)
{
If (args.Value != args.GetCurrentValue())
{
args.Value = args.Value;
args.ProceedSetValue();
((Entity)args.Instance).OnPropertyChanged(args.Location.Name);
}
}
}

NOTE
This example is a simplistic implementation of the NotifyPropertyChangedAttribute aspect. For a production-ready
implementation, see the section INotifyPropertyChanged on page 107.

This aspect can then be applied to the Customer class:

[NotifyPropertyChangedAttribute]
class Customer : INotifyPropertyChanged
{

public string Name { get; set; }
}

Now when the Name property is changed, NotifyPropertyChangedAttribute will invoke the Entity.OnProperty-
Changed method passing in the property name retrieved from its underlying property.

Developing Custom Aspects

294

20.1.7. Intercepting Events
You interact with events in three primary ways: subscribing, unsubscribing and raising them. Like methods and properties,
you may find yourself needing to intercept these three interactions. How do you execute code every time that an event is
subscribed to? Or raised? Or unsubscribed? PostSharp provides you with a simple mechanism to accomplish this easily.
This topic contains the following sections:

• Intercepting Add and Remove on page 295
• Intercepting Raise on page 296
• Accessing the current context on page 296
• Example: Removing offending event subscribers on page 296

Intercepting Add and Remove
Throughout the life of an event it is possible to have many different event handlers subscribe and unsubscribe. You may
want to log each of these actions.

1. Create an aspect that inherits from EventInterceptionAspect. Add the [PSerializableAttribute] custom
attribute.

2. Override the OnAddHandler(EventInterceptionArgs) method and add your logging code to the method
body.

3. Add the base.OnAddHandler call to the body of the OnAddHandler(EventInterceptionArgs) method. If this is
omitted, the original call to add a handler will not be executed. Unless you want to stop the addition of the
handler, you will need to add this line of code.

[PSerializable]
public class CustomEventHandling : EventInterceptionAspect
{

public override void OnAddHandler(EventInterceptionArgs args)
{

base.OnAddHandler(args);
Console.WriteLine("A handler was added");

}
}

4. To log the removal of an event handler, override the OnRemoveHandler(EventInterceptionArgs) method.

5. Add the logging you require to the method body.
6. Add the base.OnRemoveHandler call to the body of the OnRemoveHandler(EventInterceptionArgs) method.

Like you saw when overriding the OnAddHandler(EventInterceptionArgs) method, if you omit this call, the
original call to remove the handler will not occur.

public override void OnRemoveHandler(EventInterceptionArgs args)
{

base.OnRemoveHandler(args);
Console.WriteLine("A handler was removed");

}

Once you have defined the interception points in the aspect, you will need to attach the aspect to the target code. The
simplest way to do this is to add the attribute to the event handler definition.

public class Example
{

[CustomEventHandling]
public EventHandler<EventArgs> SomeEvent;

public void DoSomething()
{

if (SomeEvent != null)

Developing Simple Aspects

295

{
SomeEvent.Invoke(this, EventArgs.Empty);

}
}

}

Intercepting Raise
When you are intercepting events, you may also have situations where you want to execute additional code when the
event is raised. Raising of an event can occur in many places and you will want to centralize this code to avoid
repetition.

1. Override the OnInvokeHandler(EventInterceptionArgs) method in your aspect class and add the logging
you require to the method body.

2. Add a call to base.OnInvokeHandler to ensure that the original invocation occurs.

public override void OnInvokeHandler(EventInterceptionArgs args)
{

base.OnInvokeHandler(args);
Console.WriteLine("A handler was invoked");

}

By adding the attribute to the target event handler earlier in this process you have enabled intercepting of each raised
event.

Accessing the current context
At any time, the Handler property is set to the delegate being added, removed, or invoked. You can read and write this
property. If you write it, the delegate you assign must be compatible with the type of the event. The Event property gets
you the EventInfo of the event being accessed.

Within OnInvokeHandler(EventInterceptionArgs), the property Arguments gives access to the arguments with which
the delegate was invoked.
These concepts will be illustrated in the following example.

Example: Removing offending event subscribers
When events are subscribed to, the component that raises the event has no way to ensure that the subscriber will
behave properly when that event is raised. It's possible that the subscribing code will throw an exception when the
event is raised and when that happens you may want to unsubscribe the handler to ensure that it doesn't continue to
throw the exception. The EventInterceptionAspect can help you to accomplish this easily.

1. Override the OnInvokeHandler(EventInterceptionArgs) method in your aspect.

2. In the method body add a try...catch block.

Developing Custom Aspects

296

3. In the try block add a call to base.OnInvokeHandler and in the catch block add a call to Remove-
Handler(Delegate)

[PSerializable]
public class CustomEventHandling : EventInterceptionAspect
{

public override void OnInvokeHandler(EventInterceptionArgs args)
{

try
{

base.OnInvokeHandler(args);
}
catch (Exception e)
{

Console.WriteLine("Handler '{0}' invoked with arguments {1} failed with exception {2}.",
args.Handler.Method,
string.Join(", ", args.Arguments.Select(a => a == null ? "null" : a.ToString())),
e.GetType().Name);

args.RemoveHandler(args.Handler);
throw;

}
}

}

Now, any time an exception is thrown during event execution, the offending event handler will be unsubscribed from
the event.

20.1.8. Introducing Interfaces
When you create a CompositionAspect you are able to dynamically add interfaces to the target code at compile time and
make use of that interface type at run time.

1. The first thing that you need to do is create an aspect that inherits from CompositionAspect and implements its
members.

[PSerializable]
public class GeneralCompose : CompositionAspect
{

public override object CreateImplementationObject(AdviceArgs args)
{

throw new System.NotImplementedException();
}

}

2. Next, you need some way to tell the aspect what interface and concrete type you want to implement on the target
code. To do that, create a constructor for your aspect that accepts two parameters; one for the interface type and
one for the concrete implementation type. Assign those two constructor parameters to field level variables so we
can make use of them in the aspect.

[PSerializable]
public class GeneralCompose : CompositionAspect
{

private readonly Type _interfaceType;
private readonly Type _implementationType;

public GeneralCompose(Type interfaceType, Type implementationType)
{

_interfaceType = interfaceType;
_implementationType = implementationType;

}

Developing Simple Aspects

297

3. There are two methods that you need to implement to complete this aspect. The first is an override of the Get-
PublicInterfaces(Type) method. This method has a target type parameter which allows you to filter the
application of the interface if you choose to. For this example, simply return an array that contains the interface
type that was provided via the aspect's constructor.

protected override Type[] GetPublicInterfaces(Type targetType)
{
return new[] { _interfaceType };
}

NOTE
The interfaces that are returned from the GetPublicInterfaces(Type) method will be applied to the target
code during compilation.

4. The second method that you need to override is CreateImplementationObject(AdviceArgs). For this example
you will return an instance of the concrete implementation that was provided in the aspect's constructor. The
CreateImplementationObject(AdviceArgs) method doesn't return the type of the concrete implementation. It
returns an instance of that type instead. To create the instance use the CreateInstance(Type, Activator-
SecurityToken) method.

public override object CreateImplementationObject(AdviceArgs args)
{
return Activator.CreateInstance(_implementationType);
}

NOTE
The CreateImplementationObject(AdviceArgs) method is invoked at the application's runtime.

5. Now that you have created a complete CompositionAspect, it will need to be applied to the target code. Add the
aspect to the target code as an attribute. Provide the attribute with the interface and concrete types that you wish
to implement.

[GeneralCompose(typeof(IList), typeof(ArrayList))]
public class Fruit
{
}

Developing Custom Aspects

298

6. After compiling your application you will find that the target code now implements the assigned interfaces and
exposes itself as a new instance of the concrete type you declared. The next question that needs addressing is
how you will interact with the target code using that interface type.
To access the dynamically applied interface you must make use of a special PostSharp feature. The CastSource-
Type, TargetType(SourceType) method will allow you to safely cast the target code to the interface type that
you dynamically applied. Once that call has been done, you are able to make use of the instance through the
interface constructs.

[GeneralCompose(typeof(IList), typeof(ArrayList))]
public class Fruit
{

public Fruit()
{

IList list = Post.Cast<Fruit,IList>(this);
list.Add("apple");
list.Add("orange");
list.Add("banana");

}
}

20.1.9. Introducing Custom Attributes
Applying custom attributes to class members in C# is a powerful way to add metadata about those members at compile
time.
PostSharp provides the ability to create a custom attribute class which when applied to another class, can iterate through
those class members and automatically decorate them with custom attributes. This can be useful for example, to automat-
ically apply custom attributes or groups of custom attributes when new class members are added, without having to
remember to do it manually each time.
This topic contains the following sections:

• Introducing new custom attributes
• Copying existing custom attributes

Introducing new custom attributes
In the following example, we’ll create an attribute decorator class which applies .NET’s DataContractAttribute to a
class and DataMemberAttribute to members of a class at build time.

1. Start by creating a class called AutoDataContractAttribute which derives from TypeLevelAspect. Type-
LevelAspect transforms the class into an attribute which can be applied to other classes. Also implement
IAspectProvider which exposes the ProvideAspects(Object) method for iterating on class members.
ProvideAspects(Object) will be called for each member in the target class and will contain the code for
applying the attributes:

public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

}

Developing Simple Aspects

299

2. Implement the ProvideAspects(Object) method to cast the targetElement parameter to a Type object. Note
that this method will be called at build time. Since ProvideAspects(Object) will be called for the class itself
and for each member of the target class, the Type object can be used for inspecting each member and making
decisions about when and how to apply custom attributes. In the following snippet, the implementation
returns a new AspectInstance for the Type containing a new DataContractAttribute and then iterates
through each property of the Type returning a new AspectInstance with the DataMemberAttribute for each.
Note that both the DataContractAttribute and DataMemberAttribute are both wrapped in Custom-
AttributeIntroductionAspect objects:

public sealed class AutoDataContractAttribute : TypeLevelAspect, IAspectProvider
{

// This method is called at build time and should just provide other aspects.
public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetType = (Type) targetElement;

CustomAttributeIntroductionAspect introduceDataContractAspect =
new CustomAttributeIntroductionAspect(

new ObjectConstruction(typeof (DataContractAttribute).GetConstructor(Type.EmptyTypes)));
CustomAttributeIntroductionAspect introduceDataMemberAspect =

new CustomAttributeIntroductionAspect(
new ObjectConstruction(typeof (DataMemberAttribute).GetConstructor(Type.EmptyTypes)));

// Add the DataContract attribute to the type.
yield return new AspectInstance(targetType, introduceDataContractAspect);

// Add a DataMember attribute to every relevant property.
foreach (PropertyInfo property in

targetType.GetProperties(BindingFlags.Public | BindingFlags.DeclaredOnly | BindingFlags.Instance))
{

if (property.CanWrite)
yield return new AspectInstance(property, introduceDataMemberAspect);

}
}

}

NOTE
Since the ProvideAspects(Object) method returns an IEnumerable, the yield keyword should be used to
return aspects for PostSharp to apply.

3. Apply the AutoDataContractAttribute class. In the following example we apply it to a Product class where it
will decorate Product with DataContractAttribute and each member with DataMemberAttribute:

[AutoDataContractAttribute]
public class Product
{

public int ID { get; set; }

public string Name { get; set; }

public int RevisionNumber { get; set; }
}

Copying existing custom attributes
Another way to introduce attributes to class members is to copy them from another class. This is useful for example,
when distinct classes have members with the same names and are of the same types. In this case, attributes can be
defined in one class and then that class can be used to decorate other similar classes with same attributes.

Developing Custom Aspects

300

In the following snippet, Product’s ID and Name properties have both been modified to contain an additional attribute
from the System.ComponentModel.DataAnnotations namespace – Editable, Display, and Required respectively.
Below Product is another class called ProductViewModel containing the same properties to which we want to copy the
attributes to:

class Product
{

[EditableAttribute(false)]
[Required]
public int Id { get; set; }

[Display(Name = "The product's name")]
[Required]
public string Name { get; set; }
public int RevisionNumber { get; set; }

}

class ProductViewModel
{

public int Id { get; set; }
public string Name { get; set; }
public int RevisionNumber { get; set; }

}

To copy the attributes from the properties of Product to the corresponding properties of ProductViewModel, create an
attribute class which can be applied to ProductViewModel to perform this copy process:

1. Create a TypeLevelAspect which implements IAspectProvider. In the snippet below our class is called Copy-
CustomAttributesFrom:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
}

2. Create a constructor to take in the class type from which the property attributes are to be copied from. This
class type will be used in the next step to enumerate its properties:

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{
private Type sourceType;

public CopyCustomAttributesFrom(Type srcType)
{

sourceType = srcType;
}

}

Developing Simple Aspects

301

3. Implement ProvideAspects(Object):

class CopyCustomAttributesFrom : TypeLevelAspect, IAspectProvider
{

// Details skipped.

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Type targetClassType = (Type)targetElement;

//loop thru each property in target
foreach (PropertyInfo targetPropertyInfo in targetClassType.GetProperties())
{

PropertyInfo sourcePropertyInfo = sourceType.GetProperty(targetPropertyInfo.Name);

//loop thru all custom attributes for the source property and copy to the target property
foreach (CustomAttributeData customAttributeData in sourcePropertyInfo.GetCustomAttributesData())
{

//filter out attributes that aren’t DataAnnotations
if (customAttributeData.AttributeType.Namespace.Equals("System.ComponentModel.DataAnnotations"))
{

CustomAttributeIntroductionAspect customAttributeIntroductionAspect =
new CustomAttributeIntroductionAspect(new ObjectConstruction(customAttributeData));

yield return new AspectInstance(targetPropertyInfo, customAttributeIntroductionAspect);
}

}

}
}

}

The ProvideAspects(Object) method iterates through each property of the target class and then gets the
corresponding property from the source class. It then iterates through all custom attributes defined for the
source property, copying each to the corresponding property of the target class. ProvideAspects(Object)
also filters out attributes which aren’t from the System.ComponentModel.DataAnnotations namespace to
demonstrate how you may want to ignore some attributes during the copy process.

4. Decorate the ProductViewModel class with the CopyCustomAttributesFrom attribute, specifying Product as
the source type in the constructor. During compilation, CopyCustomAttributesFrom’s Provide-
Aspects(Object) method will then perform the copy process from Product to ProductViewModel:

[CopyCustomAttributesFrom(typeof(Product))]
class ProductViewModel
{

// Details skipped.
}

The following screenshot shows the Product and ProductViewModel classes reflected from an assembly. Here we can
see that the Editable and Display attributes were copied from Product to ProductViewModel using CopyCustom-
AttributesAttribute at build time:

Developing Custom Aspects

302

NOTE
It is not possible to delete or replace an existing custom attribute.

20.1.10. Introducing Managed Resources
Embedding resources in .NET allows for data to be packaged together with your code in an assembly. Resources are
normally specified at design time and then embedded by the compiler during build time.
PostSharp’s AssemblyLevelAspect adds additional flexibility by allowing you to programmatically add resources at compile
time. In doing so you can add logic and therefore flexibility in determining which resources get embedded and how. For
example, you could use this feature to encrypt a resource just before embedding it into your assembly.

Introducing resources
In the following example, we’ll create an assembly decorator which retrieves the current date and time during
compilation, and then stores that information in the current assembly as a resource. The example will then show that
that information can be retrieved from the assembly at runtime.

1. Start by creating a class called AddBuildInfoAspect which derives from AssemblyLevelAspect. Also
implement IAspectProvider which exposes the ProvideAspects(Object) method. The Provide-
Aspects(Object) method will be called once by PostSharp, providing access to assembly information and
allowing for a resource to be programmatically added to the assembly:

public sealed class AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{
}

}

2. Implement the ProvideAspects(Object) method:

public sealed class AddBuildInfoAspect : AssemblyLevelAspect, IAspectProvider
{

public IEnumerable<AspectInstance> ProvideAspects(object targetElement)
{

Assembly assembly = (Assembly)targetElement;

byte[] userNameData = Encoding.ASCII.GetBytes(
assembly.FullName + " was compiled by: " + Environment.UserName);

ManagedResourceIntroductionAspect mria2 = new ManagedResourceIntroductionAspect("BuildUser", userNameData);

yield return new AspectInstance(assembly, mria2);
}

}

In this example the targetElement object passed in is cast to an Assembly object from which the assembly
named is retrieved. The code then gets the current date and time, concatenates it with the assembly name,
and then converts this string to a byte array. The byte array is then stored along with a name for the data in
PostSharp’s ManagedResourceIntroductionAspect object, and returned via an AspectInstance. PostSharp
then embeds the resource into the current assembly.

3. Open your project’s AssemblyInfo.cs file and add a line to include the AddBuildInfoAspect class:

[assembly:AddBuildInfoAspect]

With this code in place the assembly will now embed the date and time as a resource into itself during compilation.

Developing Simple Aspects

303

The following code demonstrates how to retrieve the data at runtime:

class Program
{

static void Main(string[] args)
{

Assembly a = Assembly.GetExecutingAssembly();
Stream stream = a.GetManifestResourceStream("BuildUser");

byte[] bytesRead = new byte[stream.Length];
stream.Read(bytesRead, 0, (int)stream.Length);
string value = Encoding.ASCII.GetString(bytesRead);
Console.WriteLine(value);

}
}

This will display the following line in the console window:

20.2. Understanding Aspect Lifetime and Scope
An original feature of PostSharp is that aspects are instantiated at compile time. Most other frameworks instantiate aspects
at run time.
Persistence of aspects between compile time and run time is achieved by serializing aspect instances into a binary resource
stored in the transformed assembly. Therefore, you should carefully mark all aspect classes with the PSerializable-
Attribute custom attribute, and distinguish between serialized fields (typically initialized at compile-time and used at run-
time) and non-serialized fields (typically used at run-time only or at compile-time only).
This topic contains the following sections:

• Scope of Aspects
• Steps in the Lifetime of an Aspect Instance

Scope of Aspects
PostSharp offers two kinds of aspect scopes: static (per-class) and per-instance.

Statically Scoped Aspects
With statically-scoped aspects, PostSharp creates one aspect instance for each element of code to which the aspect
applies. The aspect instance is stored in a static field and is shared among all instances of the target class.

Developing Custom Aspects

304

In generic types, the aspect instance has not exactly the same scope as static fields. Consider the following piece of
code:

public class GenericClass<T>
{

static T f;

[Trace]
public void void SetField(T value) { f = value; }

}

public class Program
{

public static void Main()
{

GenericClass<int>.SetField(1);
GenericClass<long>.SetField(2);

}
}

In this program, there are two instances of the static field f (one for GenericClass<int>, the second for Generic-
Class<long>) but only a single instance of the aspect Trace.

Instance-Scoped Aspects
Instance-scoped aspect have the same scope (instance or static) as the element of code to which they are applied. If an
instance-scoped aspect is applied to a static member, it will have static scope. However, if it is applied to an instance
member or to a class, it will have the same lifetime as the class instance: an aspect instance will be created whenever the
class is instantiated, and the aspect instance will be garbage-collectable at the same time as the class instance.
Instance-scoped aspects are implemented according to the “prototype pattern”: the aspect instance created at compile
time serves as a prototype, and is cloned at run-time whenever the target class is instantiated.
Instance-scoped aspects must implement the interface IInstanceScopedAspect. Any aspect may be made instance-
scoped. The following code is a typical implementation of the interface IInstanceScopedAspect:

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

return this.MemberwiseClone();
}

object IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

Steps in the Lifetime of an Aspect Instance
The following table summarizes the different steps of the aspect instance lifetime:

Phase Step Description
Compile-
Time

Instantiation PostSharp creates a new instance of the aspect for every target to which it applies. If the
aspect has been applied using a multicast custom attribute (MulticastAttribute), there
will be one aspect instance for each matching element of code.
When the aspect is given as a custom attribute or a multicast custom attribute, each custom
attribute instance is instantiated using the same mechanism as the Common Language
Runtime (CLR) does: PostSharp calls the appropriate constructor and sets the properties
and/or fields with the appropriate values. For instance, when you use the construction
[Trace(Category="FileManager")], PostSharp calls the default constructor and the
Category property setter.

Understanding Aspect Lifetime and Scope

305

Phase Step Description
Validation PostSharp validates the aspect by calling the CompileTimeValidate aspect method. See

Validating Aspect Usage on page 307 for details.
Compile-Time
Initialization

PostSharp invokes the CompileTimeInitialize aspect method. This method may, but must
not, be overridden by concrete aspect classes in order to perform some expensive
computations that do not depend on runtime conditions. The name of the element to which
the custom attribute instance is applied is always passed to this method.

Serialization After the aspect instances have all been created and initialized, PostSharp serializes them
into a binary stream. This stream is stored inside the new assembly as a managed resource.

Run-
Time

Deserialization Before the first aspect must be executed, the aspect framework deserializes the binary
stream that has been stored in a managed resource during post-compilation.
At this point, there is still one aspect instance per target class.

Per-Class
Runtime
Initialization

Once all custom attribute instances are deserialized, we call for each of them the
RuntimeInitialize method. But this time we pass as an argument the real
System.Reflection object to which it is applied.

Per-Instance
Runtime
Initialization

This step applies only to instance-scoped aspects when they have been applied to an
instance member.
When a class is instantiated, the aspect framework creates an aspect instance by invoking
the method CreateInstance(AdviceArgs) of the prototype aspect instance. After the new
aspect instance has been set up, the aspect framework invokes the
RuntimeInitializeInstance.

Advice
Execution

Finally, advices (methods such as OnEntry(MethodExecutionArgs)) are executed.

20.3. Initializing Aspects
As explained in the section Understanding Aspect Lifetime and Scope on page 304, a different aspect instance is associated
with every element of code it is applied to. Aspect instances are created at compile time, serialized into the assembly as a
managed resource, and deserialized at runtime. If the aspect is instance-scoped, instances are duplicated from the
prototype and initialized.
Therefore, you can override one of the following three methods to handle aspect initializations:

1. The method CompileTimeInitialize is invoked at compile time, and should initialize only serializable fields of
the aspect, so that the value of these fields will be available at run time. The argument of this method is the
System.Reflection object representing the element of code to which this aspect instance has been applied.
Therefore, this method can already perform expensive computations that depend only on metadata.

2. The method RuntimeInitialize is invoked at run time. Note that the aspect constructor itself is not invoked at
run time. Therefore, overriding RuntimeInitialize is the only way to perform initialization tasks at run time. If
the aspect is instance-scoped, this method is executed on the prototype instance.

3. The methods IInstanceScopedAspectCreateInstance(AdviceArgs) and IInstanceScopedAspectRuntime-
InitializeInstance is invoked only for instance-scoped aspects. They initialize the aspect instance itself, as
RuntimeInitialize was invoked on the prototype.

Developing Custom Aspects

306

TIP
Initializing an aspect at compile time is useful when you need to compute a difficult result that depends only on metadata
-- that is, it does not depend on any runtime information. An example is to build the strings that need to be printed by a
tracing aspect. It is rather expensive to build strings that contain the full type name, the method name, and eventually
placeholders for generic parameters and parameters. However, all required pieces of information are available at compile
time. So compile time is the best moment to compute these strings.

20.4. Validating Aspect Usage
Some aspects make sense only on a specific subset of targets. For instance, an aspect may require to be applied on non-
static methods only. Another aspect may not be compatible with methods that have ref or out parameters. If these
constraints are not respected, these aspects will fail at runtime. However, defects detected by the compiler are always
cheaper to fix than ones detected later. So, as the developer of an aspect, you should ensure that the build will fail if your
aspect is being used on an invalid target.
This topic contains the following sections:

• Using [MulticastAttributeUsage] on page 307
• Implementing CompileTimeValidate on page 307
• Using Message Sources on page 308
• Validating Attributes That Are Not Aspects on page 309

Using [MulticastAttributeUsage]
The first level of protection is to configure multicasting properly with [MulticastAttributeUsageAttribute], as
described in the article Adding Aspects Declaratively Using Attributes on page 186. However, this approach can only
filter based on characteristics that are supported by the multicasting component.

Implementing CompileTimeValidate
The best way to validate aspect usage is to override the CompileTimeValidate(Object) method of your aspect class.

In this example, we will show how an aspect RequirePermissionAttribute can require to be applied only to methods
of types that implement the ISecurable interface.

1. Inherit from one of the pre-built aspects. In this case OnMethodBoundaryAspect.

public class RequirePermissionAttribute: OnMethodBoundaryAspect

2. Override the CompileTimeValidate(Object) method.

public override bool CompileTimeValidate(MethodBase target)
{

3. Perform a check to see if the target class implements the interface in question.

Type targetType = target.DeclaringType;
if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

}

Validating Aspect Usage

307

4. If the target does not implement the interface you must signal the compilation process that this target should
not have the aspect applied to it. There are two ways to do this. The first option is to throw an Invalid-
AnnotationException.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

throw new InvalidAnnotationException("The target type does not implement ISecurable.");
}

5. The second option is to emit an error message to the compilation process.

if (!typeof(ISecurable).IsAssignableFrom(targetType))
{

Message.Write(SeverityType.Error, "Custom01",
"The target type does not implement ISecurable.", target);

return false;
}

NOTE
You may have noticed that CompileTimeValidate(Object) returns a boolean value. If you only return false from this
method the compilation process will silently ignore it. You must either throw the InvalidAnnotationException or
emit an error message to not silently ignore the false return value.

Making use of the CompileTimeValidate(Object) method is a great way to encode custom rules for applying aspects
to target code. While it could be used to duplicate the functionality of the AttributeTargetTypeAttributes or
AttributeTargetMemberAttributes, its real power is to go beyond those filtering techniques. By using CompileTime-
Validate(Object) you are able to filter aspect application in any manner that you can interrogate your codebase using
reflection.

Using Message Sources
If you plan to raise many messages, you may prefer to define your own MessageSource. A MessageSource is backed by a
managed resource mapping error codes to error messages.
In order to create your own MessageSource, you should:

1. Create an implementation of the IMessageDispenser. Typically, implement the GetMessage(String) method
using a large switch statement. To each message will correspond a string

Developing Custom Aspects

308

2. Create a static instance of the MessageSource class for your message source.

For instance, the following code defines a message source based on a message dispenser:

internal class ArchitectureMessageSource : MessageSource
{

public static readonly ArchitectureMessageSource Instance = new ArchitectureMessageSource();

private ArchitectureMessageSource() : base("PostSharp.Architecture", new Dispenser())
{
}

private class Dispenser : MessageDispenser
{

public Dispenser() : base("CUS")
{
}

protected override string GetMessage(int number)
{

switch (number)
{

case 1:
return "Interface {0} cannot be implemented by {1} because of the [InternalImplement] constraint.";

case 2:
return "{0} {1} cannot be referenced from {2} {3} because of the [ComponentInternal] constraint.";

case 3:
return "Cannot use [ComponentInternal] on {0} {1} because the {0} is not internal.";

case 4:
return "Cannot use [Internal] on {0} {1} because the {0} is not public.";

default:
return null;

}
}

}
}

3. Then you can use a convenient set of methods on your MessageSource object:

MyMessageSource.Instance.Write(classType, SeverityType.Error, "CUS001", new object[] { interfaceType, classType });

NOTE
You can also emit information and warning messages.

TIP
Use ReflectionSearch to perform complex queries over System.Reflection.

Validating Attributes That Are Not Aspects
You can validate any attribute derived from Attribute by implementing the interface IValidableAnnotation.

Validating Aspect Usage

309

20.5. Developing Composite Aspects
PostSharp offers two approaches to aspect-oriented development. The first, as explained in section Developing Simple
Aspects on page 263, is very similar to object-oriented programming. It requires the aspect developer to override virtual
methods or implement interfaces. This approach is very efficient for simple problems.
One way to grow in complexity with the first approach is to use the interface IAspectProvider (see Adding Aspects
Dynamically on page 321). However, even this technique has its limitations.
This chapter documents the second approach, closer to the classic paradigm of aspect-oriented programming introduced
by AspectJ. This approach allows developers to implement more complex design patterns using aspects. We call aspects
developed with this approach “composite aspects”, because they are freely composed of different elements named “advices”
and “pointcuts”.
An advice is anything that adds a behavior or a structural element to an element of code. For instance, introducing a
method into a class, intercepting a property setter, or catching exceptions, are advices.
A pointcut is a function returning a set of elements of code to which advices apply. For instance, a function returning the set
of properties annotated with the custom attribute DataMember is a pointcut.

Classes supporting advices and pointcuts are available in the namespace PostSharp.Aspects.Advices.

A composite aspect generally derives from a class that does not define its own advices: AssemblyLevelAspect, TypeLevel-
Aspect, InstanceLevelAspect, MethodLevelAspect, LocationLevelAspect or EventLevelAspect. As such, these aspects
have no functionality. You can add functionalities by adding advices to the aspect.
Advices are covered in the following sections:

Section Description
Adding Behaviors to
Existing
Members on page 310

Advices with equivalent functionality as OnMethodBoundaryAspect,
MethodInterceptionAspect, LocationInterceptionAspect, and EventInterceptionAspect.

Introducing Interfaces,
Methods, Properties and
Events on page 314

Make the aspect introduce an interface into the target class. The interface is implemented by
the aspect itself.

Accessing Members of the
Target Class on page 319

Make the aspect introduce a new method, property or event into the target class. The new
member is implemented by the aspect itself. Conversely, the aspect can import a member of
the target so that it can invoke it through a delegate.

20.5.1. Adding Behaviors to Existing Members
In order to add new behaviors to (i.e. modify) existing members (methods, fields, properties, or events), two questions must
be addressed:

• What transformation should be performed? The answer lays in the advice. This advice is a method of your advice,
annotated with a custom attribute determining in which situation the method should be invoked. You can freely
choose the name of the method, but its signature must match the one expected by the advice type.

• Where should it be performed, i.e. on which elements on code? The answer lays in the pointcut, another custom
attribute expected on the method providing the transformation.

This topic contains the following sections:
• How to Add a Behavior to an Existing Member
• Advice Kinds on page 311

Developing Custom Aspects

310

• Pointcuts Kinds on page 312
• Grouping Advices on page 313

How to Add a Behavior to an Existing Member
1. Start with an empty aspect class deriving AssemblyLevelAspect, TypeLevelAspect, InstanceLevelAspect,

MethodLevelAspect, LocationLevelAspect or EventLevelAspect. Mark it as serializable.

2. Choose an advice type in the list below. For instance: OnMethodEntryAdvice.

3. Create a method. The signature of this method should match exactly the signature matched by this advice
type.

4. Annotate this method with a custom attribute of the advice type you chose. For instance: [OnMethodEntry-
Advice].

5. Choose a pointcut type in the list below. For instance: SelfPointcut. Annotate the advice method with that
custom attribute. For instance: [SelfPointcut].

Example
The following code shows a simple tracing aspect implemented with an advice and a pointcut. This aspect is exactly
equivalent to a class derived from OnMethodBoundaryAspect where only the method OnEntry(MethodExecutionArgs)
has been overwritten. The example is a method-level aspect and SelfPointcut means that the advice applies to the
same target as the method itself.

using System;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Serialization;

namespace Samples6
{

[PSerializable]
public sealed class TraceAttribute : MethodLevelAspect
{

[OnMethodEntryAdvice, SelfPointcut]
public void OnEntry(MethodExecutionArgs args)
{

Console.WriteLine("Entering {0}.{1}", args.Method.DeclaringType.Name, args.Method.Name);
}

}
}

Advice Kinds
The following table lists all types of advices that can transform existing members. Note that all these advices are
available as a part of a simple aspect (for instance OnMethodEntryAdvice corresponds to OnMethodBoundaryAspectOn-
Entry(MethodExecutionArgs). For a complete documentation of the advice, see the documentation of the
corresponding simple aspect.

Advice Type Targets Description
OnMethodEntryAdvice

OnMethodSuccessAdvice

OnMethodExceptionAdvice

OnMethodExitAdvice

Methods These advices are equivalent to the advices of the aspect
OnMethodBoundaryAspect. The target method to be wrapped by a
try/catch/finally construct.

OnMethodInvokeAdvice Methods This advice is equivalent to the aspect MethodInterceptionAspect. Calls
to the target methods are replaced to calls to the advice.

Developing Composite Aspects

311

Advice Type Targets Description
OnLocationGetValueAdvice

OnLocationSetValueAdvice

Fields,
Properties

These advices are equivalent to the advices of the aspect
LocationInterceptionAspect. Fields are changed into properties, and
calls to the accessors are replaced to calls to the proper advice.

LocationValidationAdvice Fields,
Properties,
Parameters

This advice is equivalent to the ValidateValue(T, String,
LocationKind)LocationInterceptionAspect method of the
ILocationValidationAspectT aspect interface. It validates values
assigned to their targets and throws an exception in case of error.

OnEventAddHandlerAdvice

OnEventRemoveHandlerAdvice

OnEventInvokeHandlerAdvice

Events These advices are equivalent to the advices of the aspect
EventInterceptionAspect. Calls to add and remove semantics are
replaced by calls to advices. When the event is fired, the
OnEventInvokeHandler is invoked for each handler, instead of the
handler itself.

Pointcuts Kinds
Pointcuts determine where the transformation provided by the advice should be applied.
From a logical point of view, pointcuts are functions that return a set of code elements. A pointcut can only select
elements of code that are inside the target of the aspect itself. For instance, if an aspect has been applied to a class A,
the pointcut can select the class A itself, members of A, but different classes or members of different classes.

Multicast Pointcut
The pointcut type MulticastPointcut allows to express a pointcut in a purely declarative way, using a single custom
attribute. It works in a very similar way as MulticastAttribute (see Adding Aspects Declaratively Using
Attributes on page 186) the kind of code elements being selected, their name and attributes can be filtered using
properties of this custom attribute.
For instance, the following code applies the OnPropertySet advice to all non-abstract properties of the class to which
the aspect has been applied.

[OnLocationSetValueAdvice,
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

Method Pointcut
The pointcut type MethodPointcut allows to express a pointcut imperatively, using a C# or VB method. The argument of
the custom attribute should contain the name of the method implementing the pointcut.
The only parameter of this method should be type-compatible with the kind of elements of code to which the aspect
applies. The return value of the pointcut method should be a collection (IEnumerableT) of objects that are type-
compatible with the kind of elements of code to which the advice applies.
For instance, the following code applies the OnPropertySet advice to all writable properties that are not annotated with
the IgnorePropertyChanged custom attribute.

private IEnumerable<PropertyInfo> SelectProperties(Type type)
{

const BindingFlags bindingFlags = BindingFlags.Instance |
BindingFlags.DeclaredOnly | BindingFlags.Public;

Developing Custom Aspects

312

return from property
in type.GetProperties(bindingFlags)

where property.CanWrite && !property.IsDefined(typeof(IgnorePropertyChanged))
select property;

}

[OnLocationSetValueAdvice, MethodPointcut("SelectProperties")]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

As you can see in this example, pointcut methods can use the power of LINQ to query System.Reflection.

Self Pointcut
The pointcut type SelfPointcut simply selects the target of the aspect.

Grouping Advices
The table of above shows advice types grouped in families. Advices of different type but of the same family can be
grouped into a single logical filter, so they are considered as single transformation.

Why Grouping Advices
Consider for instance three advices of the family OnMethodBoundaryAspect: OnMethodEntryAdvice, OnMethodSuccess-
Advice and OnMethodExceptionAdvice. The way how they are ordered is important, as it results in different generation
of try/catch/finally block.

The following table compares advice ordering strategies. In the left column, advices are executed in the order: OnEntry,
OnExit, OnException. In the right column, advices are grouped together.

void Method()
{

try
{

OnEntry();

try
{

// Original method body.
}
finally
{

OnExit();
}

}
catch
{

OnException();
throw;

}
}

void Method()
{

OnEntry();

try
{

// Original method body.
}
catch
{

OnException();
throw;

}
finally
{

OnExit();
}

}

The code in the left column may make sense in some situations, but it is not consistent with the code generated by On-
MethodBoundaryAspect. Note that the advices may have been ordered differently: the order OnEntry, OnException, On-
Exit would have generated the same code as in the right column. However, you would have had to use custom
attributes to specify order relationships between advices (see Ordering Advices on page 324). Grouping advices is a
much easier way to ensure consistency.
Additionally, when advices of the OnMethodBoundaryAspect family are grouped together, it will be possible to share
information among them using MethodExecutionTag.

Developing Composite Aspects

313

The reasons to group advices of the family LocationInterceptionAspect and EventInterceptionAspect are similar:
advices grouped together behave consistently as a single filter (see Understanding Interception Aspects on page 324).

How to Group Advices
To group several advices into a single filter:

1. Choose a master advice. The choice of the master advice is arbitrary. All other advices of the group are called
slave advices.

2. Annotate the master advice method with one advice custom attribute (see Available Advices on page 311 and
one pointcut custom attribute (see Available Pointcuts on page 312), as usually.

3. Annotate all slave advices with one advice custom attribute. Set the property Master of the custom attribute to
the name of the master advice method.

4. Do not specify any pointcut on slave advice methods.

The following code shows how two advices of type OnMethodEntryAdvice and OnMethodExitAdvice can be grouped
into a single filter:

[OnMethodEntryAdvice, MulticastPointcut]
public void OnEntry(MethodExecutionArgs args)
{
}

[OnMethodExitAdvice(Master="OnEntry")]
public void OnExit(MethodExecutionArgs args)
{
}

20.5.2. Introducing Interfaces, Methods, Properties and Events
Some design patterns require you to add properties, methods or interfaces to your target code. If many components in
your codebase need to represent the same construct, repetitively adding those constructs flies in the face of the DRY (Don't
Repeat Yourself) principle. So how can you add code constructs to your target code without it becoming repetitive?
PostSharp offers a number of ways for you to add different code constructs to your codebase in a controlled and consistent
manner. Let's take a look at those techniques.
This topic contains the following sections:

• Introducing interfaces on page 314
• Introducing methods on page 316
• Introducing properties on page 317
• Controlling the visibility of introduced members on page 318
• Overriding members or interfaces on page 318

Introducing interfaces
One of the common situations that you will encounter is the need to implement a specific interface on a large number
of classes. This may be INotifyPropertyChanged, IDisposable, IEquatableT or some custom interface that you have
created. If the implementation of the interface is consistent across all of the targets then there is no reason that we
shouldn't centralize its implementation. So how do we go about adding that interface to a class at compile time?

1. Let's add the IIdentifiable interface to the target code.

public interface IIdentifiable
{

Guid Id { get; }
}

Developing Custom Aspects

314

2. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

3. The key to adding an interface to target code is that you must implement that interface on your aspect. Let's
implement the IIdentifiable interface on our aspect. It's this implementation of the interface that will be
added to the target code, so anything that you include in method or property bodies will be added to the
target code as you have declared it in the aspect.

[PSerializable]
public class IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; private set; }
}

4. Add the IntroduceInterfaceAttribute attribute to the aspect and include the interface type that you want
to add to the target code.

[IntroduceInterface(typeof(IIdentifiable))]
[PSerializable]
public class IdentifiableAspect : InstanceLevelAspect, IIdentifiable
{

public Guid Id { get; private set; }
}

5. Finally you need to declare where this aspect should be applied to the codebase. In this example let's add it, as
an attribute, to a class.

[IdentifiableAspect]
public class Customer
{

public string Name { get; set; }
public string Address { get; set; }

}

6. After compilation you can decompile the target code and see that the interface has been added to it.

As you can see in the decompiled code, interfaces are implemented explicitly on the target code. It is also possible to
introduce public members to target code. This is covered below.

Developing Composite Aspects

315

NOTE
Interfaces and members introduced by PostSharp are not visible at compile time. To access the dynamically applied
interface you must make use of a special PostSharp feature; the CastSourceType, TargetType(SourceType) pseudo-
operator. The CastSourceType, TargetType(SourceType) method will allow you to safely cast the target code to the
interface type that was dynamically applied. Once that call has been done, you are able to make use of the instance
through the interface constructs.
There is no way to access a dynamically-inserted method, property or event, other than through reflection or the
dynamic keyword.

NOTE
When you start adding code constructs to your target code, you need to determine how to initialize them correctly.
Because these code construct are not available for you to work with at compile time you need to figure out how to
deal with them some other way. To see more about initializing code constructs that you introduce via aspects, please
see the section Initializing Aspects on page 306.

Introducing methods
The introduction of methods to your target code is very similar to introducing interfaces. The biggest difference is that
you will be introducing code at a much more granular level.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

2. Add to the aspect the method you want to introduce to the target code.

[PSerializable]
public class OurCustomAspect : InstanceLevelAspect
{

public void TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

}

NOTE
The method that you declare must be marked as public. If it is not you will see an error at compile time.

3. Decorate the method with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public void TheMethodYouWantToUse(string aValue)
{

Console.WriteLine("Inside a method that was introduced {0}", aValue);
}

4. Finally, declare where you want this aspect to be applied in the codebase.

[OurCustomAspect]
public class Customer
{

public string Name { get; set; }
}

Developing Custom Aspects

316

5. After compilation you can decompile the target code and see that the method has been added.

Introducing properties
The introduction of properties is almost exactly the same as the introduction of methods. Like introducing a method
you will use the IntroduceMemberAttribute attribute. Let's take a look at the details.

1. Create an aspect that inherits from InstanceLevelAspect and add the custom attribute [PSerializable-
Attribute].

2. Add the property you want to introduce to the aspect.

[PSerializable]
public class OurCustomAspect : InstanceLevelAspect
{

public string Name { get; set; }
}

NOTE
The property that you declare must be marked as public. If it is not you will see a compiler error.

3. Decorate the property with the IntroduceMemberAttribute attribute.

[IntroduceMember]
public string Name { get; set; }

4. Add the aspect attribute to the target code where the aspect should be applied.

[OurCustomAspect]
public class Customer
{

}

Developing Composite Aspects

317

5. After you have compiled the codebase you can decompile the target code and see that the property has been
added.

As noted for both the introduction of methods and properties, the code being introduced must be declared as public.
This is needed to ensure that PostSharp can function. If you look closely at the decompiled targets you will see that the
introduced members are actually calling the methods/properties that were declared on the aspect. If the method/
property on the aspect is not public, the target code will not be able to call it as it should.

NOTE
It is possible to introduce properties to target code, but it is not possible to introduce fields to your target code. The
reason is that all members are introduced by delegation: the actual implementation of the member always resides in
the aspect.

Controlling the visibility of introduced members
You may not want the introduced member to have public visibility once it has been introduced to the target code. Post-
Sharp allows you to control the visibility of the introduced member through the use of the Visibility property on the
aspect. To declare that a member should be introduced with private visibility, all you have to do is declare it as such.

[IntroduceMember(Visibility = Visibility.Private)]
public string Name { get; set; }

You have the ability to introduce members with a number of different visibilities including public, private, assembly
(internal in C#) and others. You also have the ability to mark an introduction so that it will be declared as virtual if you
set the IsVirtual property to true.

[IntroduceMember(Visibility = Visibility.Private, IsVirtual = true)]
public string Name { get; set; }

Overriding members or interfaces
One thing you need to be aware of is the situation where you are introducing a member that may already exist in the
scope of the target code. Perhaps the method you are trying to introduce is available on the target code through
inheritance. It's possible that the method is explicity declared on the target code as well. The introduction of a member
via an aspect needs to take these situations into account. PostSharp allows you to take these situations into account
through the use of the OverrideAction property.

The OverrideAction property allows you to declare a rule for how the introduction of a member or interface should
behave if the member or interface is already implemented on the target code. This property allows you to declare rules
such as Fail (any conflict situation will throw a compile time error), Ignore (continue on without trying to introduce the

Developing Custom Aspects

318

member/interface), OverrideOrFail or OverrideOrIgnore. It's important to understand how you want to apply your
introduced members/interfaces in situations where that member/interface may already exist.

[IntroduceMember(OverrideAction = MemberOverrideAction.Fail)]
public string Name { get; set; }

20.5.3. Accessing Members of the Target Class
PostSharp makes it possible to import a delegate of a target class method, property or event into the aspect class, so that
the aspect can invoke this member.
These mechanisms allow developers to encapsulate more design patterns using aspects.
This topic contains the following sections:

• Importing Members of the Target Class
• Interactions Between Several Member Introductions and Imports

Importing Members of the Target Class
Importing a member into an aspect allows this aspect to invoke the member. An aspect can import methods, properties,
or fields.
To import a member of the target type into the aspect class:

1. Define a field into the aspect class, of the following type:

Member
Kind

Field Type

Method A typed Delegate, typically one of the variants of Action or FuncTResult. The delegate signature
should exactly match the signature of the imported method.

Property PropertyTValue, where the generic argument is the type of the property.

Collection
Indexer

PropertyTValue, TIndex, where the first generic argument is the type of the property value and
the second is the type of the index parameter. Indexers with more than one parameter are not
supported.

Event EventTDelegate, where the generic argument is the type of the event delegate (for instance
EventHandler).

2. Make this field public. The field cannot be static.
3. Add the custom attribute ImportMemberAttribute to the field. As the constructor argument, pass the name of

the member to be imported.

At runtime, the field is set to a delegate of the imported member. Properties and events are imported as set of
delegates (PropertyTValueGet, PropertyTValueSet; EventTDelegateAdd, EventTDelegateRemove). These delegates can
be invoked by the aspect as any delegate.
The property ImportMemberAttributeIsRequired determines what happens if the member could not be found in the
target class or in its parent. By default, the field will simply have the null value if it could not be bound to a member. If
the property IsRequired is set to true, a compile-time error will be emitted.

Developing Composite Aspects

319

Interactions Between Several Member Introductions and Imports
Although member introduction and import may seem simple advices at first sight, things become more complex when
the several advices try to introduce or import the same member. PostSharp handles these situations in a robust and
predictable way. For this purpose, it is primordial to process classes, aspects and advices in a consistent order.
PostSharp enforces the following order:

1. Base classes are processed first, derived classes after. Therefore, when a class is being processed, all parent
classes have already been fully processed.

2. Aspects targeting the same class are sorted (see Coping with Several Aspects on the Same
Target on page 321) and executed.

3. Advices of the same aspect are sorted and executed in the following order:
a. Member imports which have the property ImportMemberAttributeOrder set to Before-

Introductions.

b. Member introductions.
c. Members imports which have the property ImportMemberAttributeOrder set to After-

Introductions (this is the default value).

Based on this well-defined order, the advices behave as follow:

Advice Precondition Behavior
ImportMemberAttribute No member,

or private
member
defined in a
parent class.

Error if ImportMemberAttributeIsRequired is true, ignored otherwise
(by default).

Non-virtual
member
defined.

Member imported.

Virtual
member
defined.

If ImportMemberAttributeOrder is BeforeIntroductions, the
overridden member is imported. This similar to calling a method with
the base prefix in C#. Otherwise (and by default), the member is
dynamically resolved using the virtual table of the target object.

IntroduceMemberAttribute No member,
or private
member
defined in a
parent class.

Member introduced.

Non-virtual
member
defined in a
parent class

Ignored if the property IntroduceMemberAttributeOverrideAction is
Ignore or OverrideOrIgnore, otherwise fail (by default).

Virtual
member
defined in a
parent class

Introduce a new override method if the property
IntroduceMemberAttributeOverrideAction is OverrideOrFail or
OverrideOrIgnore, ignore if the property is Ignore, otherwise fail (by
default).

Developing Custom Aspects

320

Advice Precondition Behavior
Member
defined in the
target class
(virtual or not)

Fail by default or if the property
IntroduceMemberAttributeOverrideAction is Fail.

Otherwise:
1. Move the previous method body to a new method so that the

previous implementation can be imported by advices
ImportMemberAttribute with the property Order set to
BeforeIntroductions.

2. Override the method with the imported method.

20.5.4. Adding Aspects Dynamically
Additionally to providing advices, an aspect can provide other aspects dynamically using IAspectProvider. This allows
aspect developers to address situations where it is not possible to add aspects declaratively (using custom attributes) to the
source code; aspects can be provided on the basis of a complex analysis of the target assembly using System.Reflection,
or by reading an XML file, for instance.
For details about IAspectProvider, see Adding Aspects Programmatically using IAspectProvider on page 203.

20.6. Coping with Several Aspects on the Same Target
As the team learns aspect-oriented programming and starts adding more aspect to projects, chances raise that several
aspects are added to the same element of code. This could be a major source of troubles if PostSharp did not provide a
robust framework to detect and prevent conflicts between aspects:

• Most aspects need to be ordered. For instance, an authorization aspect must be executed before a caching
aspect.

• Even if some aspects don't care to be ordered, it's good to have them applied in predictable order. Otherwise,
some code that works today may be broken tomorrow -- just because aspects were applied in a different order.

• Some aspects conflict; they cannot be together on the same aspect, or not in a given order. For instance, it does
not make sense to persist an object using two different aspects: one would persist to the database, the other to
the registry.

• Some aspects require other aspects to be applied. For instance, an aspect changing the mouse pointer to an
hourglass requires the method to execute asynchronously, otherwise the pointer shape will never be updated.

PostSharp addresses these issues by making it possible to add dependencies between aspects. The aspect dependency
framework is implemented in the namespace PostSharp.Aspects.Dependencies.

NOTE
The aspect dependency framework is not related to the notion of dependency injection.

Coping with Several Aspects on the Same Target

321

Aspect Dependency Custom Attributes
You can express dependencies of an aspect by annotating the aspect class with custom attributes derived from the type
AspectDependencyAttribute. Several derived types are available; every type matches other aspects according to
different criteria.

Attribute Type Description
AspectTypeDependencyAttribute This custom attribute expresses a dependency with a well-known aspect class.

AspectRoleDependencyAttribute This custom attribute expresses a dependency with any aspect classes enrolled
in a given role. Its dual is ProvideAspectRoleAttribute: this custom attribute
enrolls an aspect class into a role. A role is simply a string. Whenever possible,
consider using one of the roles defined in the class StandardRoles.

AspectEffectDependencyAttribute This custom attribute expresses a dependency with any aspect that has a specific
effect on the source code or the control flow. Effects are represented as a string,
whose valid values are listed in the type StandardEffects. Effects are
provisioned by the aspect weaver on the basis of a rough analysis of what the
aspect may do; aspect developers cannot assign new effects to aspects.
However, they can waive effects by using the custom attribute
WaiveAspectEffectAttribute. For instance, an aspect developer can specify
that a trace attribute has no effect at all; this aspect will commute with any other
aspect (see below).

Every of these custom attributes have similar structure and members. The first parameter of their constructor, of type
AspectDependencyAction, determines the kind of dependency relationship added between the current aspect and the
aspects matched by the custom attribute.
PostSharp supports the following kinds of relationships:

Action Description
Order The dependency expresses an order relationship. The second constructor of the custom attribute, of type

AspectDependencyPosition (with values Before or After), must be specified. The custom attributes
determine the position of the current aspect with respect to matched aspects.

Require The dependency expresses a requirement. PostSharp will issue a compile-time error if the requirement is
not satisfied for any target of the current aspect. The second constructor of the custom attribute, of type
AspectDependencyPosition, is optional. If specified, an aspect matching the dependency should be present
before or after the current aspect.

Conflict The dependency expresses a conflict. PostSharp will issue a compile-time error if any aspect matching the
dependency rule is present on any target of the current aspect. The second constructor of the custom
attribute, of type AspectDependencyPosition, is optional. If specified, an error is issued only if a matching
aspect is present before or after the current aspect.

Commute The dependency specifies that the current aspect is commutable with any matching aspect. When aspects
are commutable, PostSharp does not issue any warning if they are not strongly ordered.

Custom attribute types and values of the enumeration AspectDependencyAction are orthogonal; they can be freely
combined.

Examples

Using role-based dependencies
The following code shows how three aspects can be ordered without having explicit knowledge of each other. Each
aspect provides a different role, and defines dependencies with respect to other roles.

Developing Custom Aspects

322

[ProvideAspectRole(StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before, "UI")]
public sealed class AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

[ProvideAspectRole(StandardRoles.ExceptionHandling)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, StandardRoles.Threading)]
[AspectRoleDependency(AspectDependencyAction.Order, AspectDependencyPosition.After, "UI")]
public sealed class ExceptionDialogAttribute : OnExceptionAspect
{

// Details skipped
}

[ProvideAspectRole("UI")]
public sealed class StatusTextAttribute : OnMethodBoundaryAspect
{

// Details skipped
}

Using effect-based dependencies
The following code shows how to protect an authorization aspect to be executed after an aspect which may change the
control flow and skipping the execution of the method, such as a caching aspect. Then, it shows how the aspectAsync-
Attribute can opt out from this effect, because the aspect developer knows that does aspect does not skip the
execution of the method, but only defers it.

[AspectEffectDependency(AspectDependencyAction.Conflict, AspectDependencyPosition.Before,
StandardEffects.ChangeControlFlow)]

public sealed class AuthorizationAttribute : OnMethodBoundaryAspect
{

// Details skipped.
}

[WaiveAspectEffect(StandardEffects.ChangeControlFlow)]
public sealed class AsyncAttribute : MethodInterceptionAspect
{

// Details skipped
}

Deferring Ordering to Aspect Users
By adding dependencies to the aspect class, the aspect developer specifies the order of execution of aspects in a fully
static way. The same order is used for every element of code to which aspects apply. While this behavior is most of time
desirable, there may be situations where we want to defer ordering to users of our aspects.
Aspect users can influence the order of execution of an aspect by setting the aspect property AspectPriority, typically
when using the aspect custom attribute (the same property is available in the configuration object as Aspect-
ConfigurationAspectPriority, see Configuring Aspects on page 332).

Setting the AspectPriority results to an aspect in adding an ordering dependency between this aspect and all other
aspects where the same property has been set. Therefore, aspect priorities complement, and do not replace, other
ordering dependencies. The aspect developer may specify vital aspect dependencies (that is, under-specify aspect
ordering), and let it to the aspect user to complete the ordering with priorities.

CAUTION NOTE
Do not confuse the property AspectPriority with AttributePriority. The latter determines an order in which
several custom attributes of the same type are processed by the MulticastAttribute engine. The first determines in
which order the aspects are executed at run time.

Coping with Several Aspects on the Same Target

323

Adding Dependencies to Third-Party Aspects
If you are using aspects provided by several third-party vendors who don't know about each other, you may need to
solve conflicts on your own.
You can do that by adding any custom attribute derived from AspectDependencyAttribute at assembly level, and use
the property TargetType to specify to which aspect class the dependency applies.

Here is an example:

[assembly: AspectTypeDependency(AspectDependencyAction.Order, AspectDependencyPosition.Before,
typeof(Vendor1.TraceAspect), TargetType = typeof(Vendor2.ExceptionHandlingAspect)]

20.6.1. Ordering Advices
The section Coping with Several Aspects on the Same Target on page 321 talks in terms of aspect dependencies and aspect
ordering. Most of what has been said there is also valid to advices. When we talk of the order of execution of aspects, we
actually mean the execution of advices ("aspects" themselves, “stricto sensu”, are never executed).
Dependencies defined at aspect level implicitly apply to all advices. When developing a composite aspect (see Developing
Composite Aspects on page 310), it is possible to add dependencies directly to advice methods by annotating them with
custom attributes of the namespace PostSharp.Aspects.Dependencies.

Note that all advices provided by an aspect are ordered in a single block. Suppose that a method is the target of advices
Aspect1.MethodA, Aspect1.MethodB and Aspect2.MethodC. The next table shows valid and invalid orders:

Valid Orders Invalid Orders
Aspect1.MethodA, Aspect1.MethodB, Aspect2.MethodC Aspect1.MethodA, Aspect2.MethodC, Aspect1.MethodB

Aspect1.MethodB, Aspect1.MethodA, Aspect2.MethodC Aspect1.MethodB, Aspect2.MethodC, Aspect1.MethodA

Aspect2.MethodC, Aspect1.MethodA, Aspect1.MethodB

Aspect2.MethodC, Aspect1.MethodB, Aspect1.MethodA

Ordering Advices of the Same Aspect
Advices of the same aspect can be used using any custom attribute derived from AspectDependencyAttribute.

Because advices of the same aspect instance are necessarily ordered in block, it is appropriate to specify dependencies
between aspect classes extensively, and specify ordering of advices only in the scope of the current aspect instance. The
most appropriate dependency custom attribute for this purpose is AdviceDependencyAttribute, which accepts the
name of the advice method as a parameter.

20.7. Understanding Interception Aspects
Aspect types MethodInterceptionAspect, LocationInterceptionAspect and EventInterceptionAspect are all based on
the same principle: the aspect is invoked instead of the enhanced semantic. The aspect gets access to the intercepted
semantic through methods prefixed by Proceed, or by other methods.

Things become more complex when several interception aspects are applied to the same element of code. Consider a
method enhanced by three aspects A, B and C. When aspect A calls the method Proceed, it will actually invoke the method

Developing Custom Aspects

324

OnInvoke(MethodInterceptionArgs) of aspect B. Similarly, aspect B will invoke aspect C, and aspect C will eventually
invoke the original method.

Chains of Invocation
Interception aspects form a chain on invocation where every aspect instance is a node in the chain, and the intercepted
member is the last node.
An interception aspect can only invoke the next node in the chain. There is no way an aspect can invoke another node,
or can access directly the intercepted member. This design ensures that aspects behave in a robust and consistent way
in all situations.
Aspect types LocationInterceptionAspect and EventInterceptionAspect have several semantics (Get and Set for
LocationInterceptionAspect; Add, Remove and Invoke for EventInterceptionAspect). All advices of the same aspect
instance (one advice per semantic) logically belong to the same node in the chain of invocation. Therefore, when the
implementation of the advice LocationInterceptionAspectOnSetValue(LocationInterceptionArgs) invokes the
method LocationInterceptionArgsGetCurrentValue, it actually invokes the Get semantic of the next node in the
chain. If the aspect had used PropertyInfoGetValue(Object) to get the value (as was usual in PostSharp 1.0), it would
have invoked the first node in the chain!

Aspects as Filters: a Disciplined Approach to Aspect-Oriented Programming
In its early days, aspect-oriented programming (AOP) has been perceived as a dangerous technology. Aspects allowed
to do anything with a program. Although AOP has been designed to improve the readability and maintainability of
source code, it could actually have the opposite effect.
As goes the saying, with a sharp tool, one must pay greater attention.
PostSharp was designed to respect one of the most fundamental principles of software engineering: encapsulation.
Encapsulation means the condition of being enclosed, as in a capsule. In object-oriented programming, the primary
capsule is the class itself. Outside code communicates with the capsule through well-defined ports: public members.
Outside code cannot modify what's inside the capsule. A well-designed capsule should check the validity of messages it
receives or it sends - something called precondition and postcondition checking. The second level of encapsulation is
the method: even inside a class, code should be designed so that the implementation of a method does not need to
care about the implementation of another method.
Of course, it is possible to ignore the rules of encapsulation. But it would most probably result in poorly readable and
maintainable code.
PostSharp actually allows you to break the first capsule: you can add advices to private members of a class. But it stops
there: you cannot break the capsule of a method. Instead, you can enclose a method into a new capsule analog to a
filter: the advice. When a method is enhanced by an advice, outside code seeking access to this method must go
through its advice.
When a method is enhanced by several advices, every advice constitutes a filter that encloses not only the method, but
all advices with lower priority.
Methods have a single semantic: Invoke. Properties, fields and events have many multiple semantics. These members
can be considered as a single capsule, and their semantics as different ports in the capsule.

Understanding Interception Aspects

325

NOTE
Things can become more complex. Consider a property with a getter and a setter. The property is enhanced by an
aspect of type LocationInterceptionAspect. The property setter is enhanced by a MethodInterceptionAspect with
lower priority. From a logical point of view, the property is considered as a single capsule with two ports. The capsule is
enclosed by two filters, one for each aspect. The aspect LocationInterceptionAspect filters both ports. However,
MethodInterceptionAspect only filters the Set port. If the LocationInterceptionAspect invokes the Get semantic, it
will be directed to the property getter, because there is no filter between the advice and the semantic. However, when
the same aspect invokes the Set semantic, it will be directed to LocationInterceptionAspect as this filters lays in the
way.

NOTE
The Invoke semantic of EventInterceptionAspect is executed in invert order. Indeed, the message originates inside
the capsule is emitted outside. For all other semantics, the message always comes from outside and is directed to the
capsule.

Aspect Bindings
When an advice is invoked, it receives an interface to the next node in the chain of invocation: an aspect binding. Every
aspect type has its corresponding binding interface, exposed on a property of the advice argument object.

Aspect Type Binding Interface Exposed On
MethodInterceptionAspect IMethodBinding MethodInterceptionArgsBinding

LocationInterceptionAspect ILocationBinding LocationInterceptionArgsBinding

EventInterceptionAspect IEventBinding EventInterceptionArgsBinding

Binding objects are singletons. They are fully thread-safe and reentrant. They can be invoked in any situation. This
contrasts with advice arguments, which may be shared among different advices and should not be used once the advice
gave over control to the next node in the chain invocation.

NOTE
As objects of type Arguments may be shared among different advices, some of which may modify the arguments, it
may be safe to clone the object before the advice gives over control.

NOTE
For run-time performance reasons, PostSharp does not access binding classes through their interface, but directly
invokes their implementation. Implementation classes of binding interfaces are considered an implementation detail
and should not be referred to from user code.

20.8. Understanding Aspect Serialization
As explained in section Understanding Aspect Lifetime and Scope on page 304, aspect are first instantiated at build time by
the weaver, are then initialized by the CompileTimeInitialize method, and serialized and stored in the assembly as a
managed resource. Aspects are then deserialized at runtime, before being executed.

Developing Custom Aspects

326

Because of the aspect life cycle, aspect classes must be made serializable as described in this section.
This topic contains the following sections:

• Default serialization strategy on page 327
• Fallback serialization strategy on page 327
• Aspects without serialization on page 327

Default serialization strategy
Typically, aspects can be made serializable by adding a custom attribute to the class, which causes all fields of the class
to be serialized. Fields that do not need to be serialized must be annotated with an opt-out custom attribute. PostSharp
chooses the serialization strategy according to these custom attributes. The serialization strategy is implemented in
classes derived from the abstract AspectSerializer class. The default serialization strategy is implemented in the
PortableAspectSerializer class, that is backed by PortableFormatter.

This is how you can apply default serialization strategy to your aspect:
• To make the class serializable, annotate the class with the [PSerializableAttribute] custom attribute.

• To exclude the field from the serialization, annotate the field with the [PNonSerializedAttribute] custom
attribute.

Fallback serialization strategy
In some cases the default serialization strategy implemented by the PortableAspectSerializer class may not be
appropriate for your aspects. For example, the data structures used in your classes may not be supported by the
PortableFormatter implementation or you may need your code to be backward compatible with PostSharp 4.2 and
earlier. In versions 4.2 and earlier the default serialization strategy was implemented in the BinaryAspectSerializer
class, that was backed by BinaryFormatter. You can still use BinaryAspectSerializer as a fallback serialization
strategy in PostSharp 4.3 and later.
To apply fallback serialization strategy to your aspects, use [SerializableAttribute] custom attribute instead of
[PSerializableAttribute], and use [NonSerializedAttribute] custom attribute instead of [PNonSerialized-
Attribute].

NOTE
The BinaryAspectSerializer class is supported only in projects that target the .NET Framework with full trust.

Aspects without serialization
In some situations, serializing and deserializing the aspect may be a suboptimal solution. In case aspect field values are
a pure function of constructor arguments and properties, it may be more efficient to emit code that instantiates these
aspects at runtime instead of serializing-deserializing them. This is the case, typically, if the aspect does not implement
the CompileTimeInitialize method.

In this situation, it is better to use a different serializer: MsilAspectSerializer.

NOTE
MsilAspectSerializer is actually not a serializer. When you use this implementation instead of a real serializer, the
aspect is not serialized, but the weaver generates MSIL instructions to build the aspect instance at runtime, by calling
the aspect class constructor and by setting its fields and properties.

Understanding Aspect Serialization

327

You can specify which serializer should be used for a specific aspect class by setting the property Aspect-
ConfigurationSerializerType of the configuration of this aspect class or instance.

See section Configuring Aspects on page 332 for details.
The following code shows how to choose the serializer type for an OnMethodBoundaryAspect:

[OnMethodBoundaryAspectConfiguration(SerializerType=typeof(MsilAspectSerializer))]
public sealed MyAspect : OnMethodBoundaryAspect

20.9. Customizing Aspect Appearance in Visual Studio
This chapter explains how to configure how your custom aspects appear in PostSharp Tools for Visual Studio. It contains the
following topics:

Section Description
Customizing Aspect Description in Tooltips on page 328 This topic describes how to change the description of

custom aspects in PostSharp-generated tooltips in Visual
Studio.

Estimating Code Savings on page 329 This topic explains how give hints so that PostSharp can
better estimate how many lines of code are saved thanks to
your aspect.

20.9.1. Customizing Aspect Description in Tooltips
When you position the mouse cursor over a declaration that has been enhanced by an aspect, PostSharp Tools adds a
description of the aspect to the Intellisense tooltip. The description that PostSharp generates by default is sometimes little
helpful. To make the Intellisense description of your aspect more understandable for its users, you should override the
default description.

Simple Aspects
Simple aspects are aspects built by deriving from a base class such as OnMethodBoundaryAspect and overriding virtual
methods of the base class, such as OnEntry(MethodExecutionArgs). They are described in the section Developing
Simple Aspects on page 263.
To set the description of a simple aspect, add the AspectDescriptionAttribute custom attribute to the aspect class.

This is illustrated in the following code snippet.

[PSerializable]
[AspectDescription("Applies the exception handling policy")]
public sealed class ExceptionHandlerAttribute : OnExceptionAspect
{

public override void OnException(MethodExecutionArgs eventArgs)
{

if (!ExceptionHandler.OnException(eventArgs.Exception))
{

eventArgs.FlowBehavior = FlowBehavior.Continue;
}

}
}

Developing Custom Aspects

328

Composite Aspects
Composite aspects are aspects where advices are not overridden from the base class, but are added using advice and
pointcut custom attributes such as OnMethodEntryAdvice and MethodPointcut. Composite aspects are described in
section Developing Composite Aspects on page 310. Unlike simple aspects, composite aspects can have several advices,
With composite aspects, you should add a description to every advice. You can do that by setting the Description
property of the advice custom attribute.
The following code snippet illustrates how to set the description of the advice. This description will appear in the
Intellisense tooltip of each property affected by this advice.

[OnLocationSetValueAdvice(Description="Persists the property to disk."),
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

20.9.2. Estimating Code Savings
During build, PostSharp attempts to estimate how many lines of hand-written code were avoided thanks to aspects. By
default, PostSharp considers that 2 lines of code are saved every time an advice is applied to a target. This is of course a
very rough estimate. You can add information to your aspects and advices to make the estimate more accurate.

TIP
When adding code saving estimate, ask yourself the following question: how much code would an intelligent developer
have written if she has to implement the same feature without PostSharp, using the best possible strategy? Do not assume
that the strategy you took to implement the feature with an aspect would be the same as the strategy for hand-written
code.

This topic contains the following sections:
• Simple aspects on page 329
• Composite aspects on page 330
• Adding code saving hints programmatically on page 330

Simple aspects
Simple aspects are aspects built by deriving from a base class such as OnMethodBoundaryAspect and overriding virtual
methods of the base class, such as OnEntry(MethodExecutionArgs). They are described in the section Developing
Simple Aspects on page 263.
By default, PostSharp estimates that 2 lines of hand-written code are avoided for each advice method that you override,
every time the aspect is applied to a target.
To override the default value, add the LinesOfCodeAvoidedAttribute custom attribute to the aspect class. The
argument of the custom attribute constructor must be set to the number of lines of hand-written coded avoided every
time the aspect is applied to a target.
The following code snippet shows how to specify that 4 lines of code are avoided every time the aspect is applied. If the
aspect is applied to 100 methods, PostSharp will estimate that 400 lines of hand-written code have been avoided.

[PSerializable]
[LinesOfCodeAvoided(4)]
public sealed class ExceptionHandlerAttribute : OnExceptionAspect

Customizing Aspect Appearance in Visual Studio

329

{
public override void OnException(MethodExecutionArgs eventArgs)
{

if (!ExceptionHandler.OnException(eventArgs.Exception))
{

eventArgs.FlowBehavior = FlowBehavior.Continue;
}

}
}

Composite aspects
Composite aspects are aspects where advices are not overridden from the base class, but are added using advice and
pointcut custom attributes such as OnMethodEntryAdvice and MethodPointcut. Composite aspects are described in
section Developing Composite Aspects on page 310. Unlike simple aspects, composite aspects can have several advices,
By default, PostSharp estimates that 2 lines of hand-written code are avoided for each advice, every time the advice is
applied to a target. Some advices may have different default values. For instance, the IntroduceInterfaceAttribute
advice shall count 2 lines of code per introduced interface method.
You can still use the aspect-level LinesOfCodeAvoidedAttribute custom attribute. It will increment the estimated
number of avoided lines of code every time the aspect is applied to a target. However, to provide more relevant
estimates, you need to provide code saving information at advice level.
To specify how many lines of hand-written code are avoided every time an advice is applied to a target, specify the
Advice property of the advice custom attribute.

The following code snippet shows how to specify that 1 line of code is avoided every time the advice is applied.
Suppose that the aspect is applied to 100 classes and each class has in average 5 instance non-abstract properties. In
this situation, PostSharp will estimate that 500 lines of hand-written code have been avoided.

[OnLocationSetValueAdvice(LinesOfCodeAvoided = 1),
MulticastPointcut(Targets = MulticastTargets.Property,

Attributes = MulticastAttributes.Instance | MulticastAttributes.NonAbstract)]
public void OnPropertySet(LocationInterceptionArgs args)
{

// Details skipped.
}

Adding code saving hints programmatically
In the previous sections, we described how to add code saving hints declarively using custom attributes. Sometimes
declarative estimations are not accurate enough. To learn how to add programatic hints, see Pushing Information to
PostSharp Tools Programmatically on page 330.

20.9.3. Pushing Information to PostSharp Tools Programmatically
The IWeavingSymbolsService service allows you to push information from your aspect, at build time, to PostSharp Tools
for Visual Studio.
This service can be used in the following scenarios:

• Adding some text to the Intellisense tooltip of a declaration.
• Adding some code saving information.
• Add some annotation that means that PostSharp Tools should consider that a declaration has been decorated

with a custom attribute. This annotation is then taken into account by the analytic engine that powers the real-
time quick actions and diagnostics of PostSharp Tools. For instance, the FieldRule facility uses this feature.

Developing Custom Aspects

330

To get an instance of this service, use the GetServiceT(Boolean) method from PostSharpEnvironment.CurrentProject.
GetService.

20.10. Advanced

20.10.1. Coping with Custom Object Serializers
Some aspects need to be initialized when a new instance of the class to which they are applied is created. For instance,
instance-scoped aspect must be cloned from the prototype; members imported into the through ImportMemberAttribute
must be bound to aspect fields.
PostSharp enhances every constructor of every enhanced class so that aspects are properly initialized.
However, it is possible to create new instances of classes by bypassing the constructor. This happens, for instance, when
classes are deserialized by the BinaryFormatter or the DataContractSerializer. These formatters use the method
FormatterServicesGetUninitializedObject(Type) to create new instances, but this method bypasses all constructors.

PostSharp implements a workaround for the deserializers BinaryFormatter and DataContractSerializer: it creates or
modifies a method annotated by the custom attribute OnDeserializingAttribute, so that aspects are initialized properly.

However, if you are using a custom deserializer, or for any reason create instances using the method the method
FormatterServicesGetUninitializedObject(Type), you will have to initialize aspects manually.

Initializing Aspects Manually
There are two possible ways to initialize an aspect from user code.

By Defining a Method InitializeAspects
You can define in your classes (typically in one of the root classes of your class hierarchy) a method with the following
name and signature:

protected virtual void InitializeAspects();

When PostSharp discovers this method, it will insert its own initialization logic at the beginning of the Initialize-
Aspects method. The original logic is not deleted. This method can safely have an empty implementation.

The following constraints apply:
• The method should be virtual unless the class is sealed.

• The method should be protected or public, unless the class is internal.

For instance, the following class would enable aspects (applied on this class or on derived classes) to be initialized after
deserialization (note that PostSharp automatically generates this code for BinaryFormatter and DataContract-
Serializer; you only need to do it manually for a custom serializer).

[DataContract]
public abstract class BaseClass
{

protected virtual void InitializeAspects()
{
}

[OnDeserializing]

Advanced

331

private void OnDeserializingInitializeAspects()
{

this.InitializeAspects();
}

}

By Invoking AspectUtilities.InitializeCurrentAspects
Instead of providing an empty method InitializeAspects, it is possible to invoke the method Aspect-
UtilitiesInitializeCurrentAspects. A call to this method will be translated into a call to InitializeAspects. It has
to be invoked from a non-static method of an enhanced class.
If the class from which InitializeCurrentAspects is invoked has not been enhanced by an aspect requiring initial-
ization, the call to this method is simply ignored.

NOTE
Using this approach may be brittle in some situations: calls to InitializeCurrentAspects will have no effect if
aspects are applied to derived classes, but not to the calling class. In this scenario, it is preferable to define the method
InitializeAspects.

20.10.2. Configuring Aspects
Configuration settings of aspects determine how they should be processed by their weaver. Configuration settings are
always evaluated at build time. Most aspects have one or many of them. For instance, the aspect type OnExceptionAspect
has a configuration setting determining the type of exceptions handled with this aspect.
There are two ways to configure an aspect: declarative and imperative.

Declarative Configuration
You can configure an aspect declaratively by applying the appropriate custom attribute on the aspect class. Aspect
configuration attributes are in the namespace PostSharp.Aspects.Configuration. Every aspect type has its
corresponding type of configuration attribute. The name of the custom attribute starts with the name of the aspect and
has the suffix ConfigurationAttribute. For instance, the configuration attribute of the aspect class OnExceptionAspect
is OnExceptionAspectConfigurationAttribute.

Declarative configuration has always precedence over imperative configuration: if some property of the configuration
custom attribute is set on the aspect class, or on any parent, the corresponding imperative semantic will not be
evaluated.
Once a configuration property has been set in a parent class, it cannot be overwritten in a child class.
Note that these restrictions are enforced at the level of properties. If a property of a configuration custom attribute is
not set in a parent class, it can still be overwritten in a child class or by an imperative semantic.

Imperative Configuration
A second way to configure an aspect class is to override its configuration methods or set its configuration property.

NOTE
Imperative configuration is only available when you target the full .NET Framework. It is not available for Silverlight or
the Compact Framework.

Developing Custom Aspects

332

Benefits of Imperative Configuration
The advantage of imperative configuration is that it can be arbitrarily complex (since the code of the configuration
method is executed inside the weaver). Specifically, it allows the configuration to be dependent on how the aspect is
actually used, for instance the configuration can depend on the value of a property of the aspect custom attribute.

Implementation Note
Under the hood, aspects implement the method IAspectBuildSemanticsGetAspectConfiguration(Object). This
method should return a configuration object, derived from the class AspectConfiguration. Every aspect class has its
own aspect configuration class. For instance, the configuration attribute of the aspect class OnExceptionAspect is On-
ExceptionAspectConfiguration. The aspect type OnExceptionAspect implements IAspectBuildSemanticsGet-
AspectConfiguration(Object) by creating an instance of OnExceptionAspectConfiguration, then it invokes the
method OnExceptionAspectGetExceptionType(MethodBase) and copies the return value of this method to the
property OnExceptionAspectConfigurationExceptionType. Therefore, there are two ways to configure an aspect:
either by overriding configuration methods and setting configuration properties (these methods and properties are
provided by the framework for convenience only), or by implementing the method IAspectBuildSemanticsGetAspect-
Configuration(Object). If your aspect does not derive from the aspect class OnExceptionAspect, but directly
implements the aspect interface IOnExceptionAspect, you can use only the later method.

Advanced

333

Developing Custom Aspects

334

CHAPTER 21

Testing and Debugging Aspects

Aspects should be tested as any piece of code. However, testing techniques for aspects differ from testing techniques for
normal class libraries because of a number of reasons:

• Aspects instantiation is not user-controlled.
• Aspects partially execute at build time.
• Aspects can emit build errors. Logic that emits build errors should be tested too.

These characteristics are no obstacle to proper testing of aspects.
This chapter contains the following sections:

• Writing Simple Tests on page 335 explains how to test the behavior of an aspect.
• Testing that an Aspect has been Applied on page 337 shows how to test that an aspect has been applied to the

expected set of code artifacts.
• Consuming Dependencies from the Aspect on page 338 describes several ways for aspects to consume

dependencies from dependency-injection containers and service locators.
• Debugging Run-Time Aspect Logic on page 352 explains how to debug run-time logic.
• Debugging Build-Time Aspect Logic on page 355 explains how to debug build-time logic.

21.1. Writing Simple Tests
When designing a test strategy for aspects, it is fundamental to understand that aspects cannot be used in isolation. They
are always used in the context of the code artefact to which it has been applied. Therefore, when writing an aspect, two
kinds of test artifacts must be written:

• Test target code to which the aspect will be applied.
• Test invocation code that invokes the target code and verifies that the combination of the aspect and the target

code exhibits the intended behavior.

Achieving large test coverage
As with other code, you have to test the aspect with input context that varies enough to produce a large code coverage.
In the case of aspects, the input context is composed of the following items:

• Arguments of the aspect itself, i.e. constructor arguments and property values. If the aspect behavior depends
of aspect arguments, high code coverage of the aspect requires varying aspect arguments.

Writing Simple Tests

335

• Target code can be considered as conceptually being a part of the input arguments of the aspect. For instance,
if an aspect contains logic that depends on the method being static or non-static, you should test the aspect
against both static and non-static methods.

• Arguments of the target code can affect the run-time behavior of the aspect. For instance, a buggy aspects may
incorrectly handle null arguments.

Example: testing a caching aspect
The following example demonstrates how to test a caching aspect. High code coverage is achieved by varying the target
code and testing with null and non-null parameters.

using System;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace Samples
{

[TestClass]
public class TestCacheAspect
{

private static int invocations;

// Instance method without parameters

[TestMethod]
public void TestInstanceMethodWithoutParameter()
{

int call1 = this.InstanceMethodWithoutParameter();
int call2 = this.InstanceMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]
private int InstanceMethodWithoutParameter()
{

return invocations++;
}

// Static method without parameters

[TestMethod]
public void TestStaticMethodWithoutParameter()
{

int call1 = StaticMethodWithoutParameter();
int call2 = StaticMethodWithoutParameter();

Assert.AreEqual(call1, call2);
}

[Cache]
private static int StaticMethodWithoutParameter()
{

return invocations++;
}

// Instance method with parameters

[TestMethod]
public void TestInstanceMethodWithParameter()
{

int call1a = this.InstanceMethodWithParameter("foo");
int call2a = this.InstanceMethodWithParameter(null);
int call1b = this.InstanceMethodWithParameter("foo");
int call2b = this.InstanceMethodWithParameter(null);

Assert.AreEqual(call1a, call1b);
Assert.AreEqual(call2a, call2b);
Assert.AreNotEqual(call1a, call2a);

Testing and Debugging Aspects

336

}

[Cache]
private int InstanceMethodWithParameter(string param)
{

return invocations++;
}

}
}

21.2. Testing that an Aspect has been Applied
In the previous section, we have seen how to test the aspect behavior itself. Now, let's see how we can test that the aspect
has been applied to the expected set of targets. This can also be called testing the pointcut.

Why to test that the aspect has been properly applied?
You may need to test whether an aspect has been applied to specific targets for one of the following reasons:

• The aspect is applied using non-trivial regular expressions with MulticastAttribute.

• The aspect is silently filtered out using CompileTimeValidate(MethodBase).

• The aspect is applied using an IAspectProvider.

Testing that the aspect behavior is exhibited
The most obvious way to test that the aspect has been applied on to an element of code is to execute that code and
ensure that the code actually exhibits the aspect behavior. This approach does not differ from the one described in
section Writing Simple Tests on page 335.

Testing that the aspect custom attribute is present
You can check that an aspect has been applied to a target by reflecting the custom attributes present on this element of
code.
However, custom attributes representing aspects are stripped by default. If you want PostSharp to emit custom
attributes, follow instructions of section Reflecting Aspect Instances at Runtime on page 197.

NOTE
Aspects added by IAspectProvider are not represented by custom attributes, so their presence cannot be tested by
this approach.

Parsing the PostSharp symbol file
PostSharp generates a symbol file named bin\Debug\MyAssembly.psssym, where MyAssembly is the name of the
assembly. In theory, you could use this file to determine which elements of code have been modified by aspects in your
project.

CAUTION NOTE
The PostSharp symbol file format is undocumented and unsupported. It means that PostSharp support team cannot
answer questions related to this file format.

Testing that an Aspect has been Applied

337

21.3. Consuming Dependencies from the Aspect
Aspects, as other components, may have dependencies to other application services. Aspects may be bound to the abstract
interface to this service, and may need to resolve the dependency at runtime.
However, two reasons prevent us from the following approaches that are usual with dependency injection containers:

• Aspects are instantiated at build time, and dependency-injection containers only exist at run-time.
• Aspects typically have a static scope. Unless they implement the IInstanceScopedAspect, aspect instances are

stored in static fields, even when applied to instance members.

These characteristics are not an obstacle to using service containers, but different patterns must be followed.
This section presents several ways to consume dependencies from an aspect:

• Using a Global Composition Container on page 338
• Using a Global Service Locator on page 341
• Using Dynamic Dependency Resolution on page 343
• Using Contextual Dependency Resolution on page 346
• Importing Dependencies from the Target Object on page 348

21.3.1. Using a Global Composition Container
Although the aspect cannot be instantiated by the dependency injection container, it is possible to initialize the aspect from
an ambient container at runtime. An ambient container is one that is exposed as a static member and that is global to the
whole application.
Dependency injection containers typically offer methods to initialize objects that have been instantiated externally. For
instance, the Managed Extensibility Framework offers the SatisfyImportsOnce(ComposablePart) method.

The dependency injection method can be invoked from the RuntimeInitialize(MethodBase) method.

NOTE
User code has no control over the time when and the thread on which an aspect is initialized. Therefore, using Thread-
StaticAttribute to make the container local to the current thread is not a reliable approach.

IMPORTANT NOTE
The service container must be initialized before the execution of any class that is enhanced by the aspect. It means that it
is not possible to use the aspect on test classes themselves. To relax this constraint, it is possible to initialize the
dependency lazily, when the first advice is hit.

Example: testable logging aspect with a global MEF service container
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;

Testing and Debugging Aspects

338

using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.GlobalServiceContainer
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceInjector
{

private static CompositionContainer container;

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static void BuildObject(object o)
{

if (container == null)
throw new InvalidOperationException();

container.SatisfyImportsOnce(o);
}

}

[PSerializable]
public class LogAspect : OnMethodBoundaryAspect
{

[Import] private ILogger logger;

public override void RuntimeInitialize(MethodBase method)
{

AspectServiceInjector.BuildObject(this);
}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

// The static constructor of LogAspect is called before the static constructor of the type
// containing target methods. This is why we cannot use the aspect in the Program class.
Foo.LoggedMethod();

}
}

internal class Foo
{

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)

Consuming Dependencies from the Aspect

339

{
Console.WriteLine(message);

}
}

}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceContainer.Test
{

[TestClass]
public class TestLogAspect
{

static TestLogAspect()
{

AspectServiceInjector.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
public void TestMethod()
{

TestLogger.Clear();
new TargetClass().TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

private class TargetClass
{

[LogAspect]
public void TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

Testing and Debugging Aspects

340

21.3.2. Using a Global Service Locator
If all aspect instances are using the same global dependency injection container, it is likely that dependencies of all
instances will resolve to the same service implementation. Therefore, storing dependencies in an instance field may be a
waste of memory, especially for aspects that are applied to a very high number of code elements.
Alternatively, dependencies can be stored in static fields and initialized in the aspect static constructor.

TIP
Use the PostSharpEnvironmentIsPostSharpRunning property to make sure that this part of the static constructor is
executed at runtime only, when PostSharp is not running.

In this case, dependency injection method such as SatisfyImportsOnce(ComposablePart) cannot be used. Instead, the
container must be used as a service locator. For instance, MEF exposes the method ExportProviderGetExport.

IMPORTANT NOTE
The service locator must be initialized before the execution of any class that is enhanced by the aspect. It means that it is
not possible to use the aspect on the entry-point class (Program or App, typically). To relax this constraint, it is possible to
initialize the dependency on demand, for instance using the LazyT construct.

Example: testable aspect with a global MEF service locator
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.GlobalServiceLocator
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static Lazy<T> GetService<T>() where T : class
{

return new Lazy<T>(GetServiceImpl<T>);
}

private static T GetServiceImpl<T>()
{

if (container == null)
throw new InvalidOperationException();

Consuming Dependencies from the Aspect

341

return container.GetExport<T>().Value;
}

}

[PSerializable]
public class LogAspect : OnMethodBoundaryAspect
{

private static readonly Lazy<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)
{

logger = AspectServiceLocator.GetService<ILogger>();
}

}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.GlobalServiceLocator.Test
{

[TestClass]
public class TestLogAspect
{

static TestLogAspect()
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)));
}

[TestMethod]
public void TestMethod()

Testing and Debugging Aspects

342

{
TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
private void TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

21.3.3. Using Dynamic Dependency Resolution
Both previous approaches have a static dependency resolution strategy: it cannot be changed over time. Therefore, these
strategies could be unsuitable in cases where several tests need different configurations of the dependency container.
A possible solution is to resolve dependencies dynamically each time they are needed, and not only at aspect initialization.
Although this solution is ideal for the sake of testing, it may be too inefficient for production. Therefore, the solution would
still need to provide dependency caching for production mode. Caching would neutralize the dynamic characteristics of
dependency resolution.
This solution would be based on the following elements:

1. The service locator can be initialized in two modes: production (the resolution strategy is immutable) and testing
(the resolution strategy can be modified).

2. The service locator returns a delegate (Func<T>, where T is the dependency type), instead of the dependency itself
(T or Lazy<T>).

3. The aspect calls the service locator during aspect initialization and stores the delegate.
4. The aspect calls the delegate at runtime.

Example: testable logging aspect with a global MEF service container with dynamic resolution
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using PostSharp.Aspects;

Consuming Dependencies from the Aspect

343

using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.Dynamic
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;
private static bool isCacheable;

public static void Initialize(ComposablePartCatalog catalog, bool isCacheable)
{

if (AspectServiceLocator.isCacheable && container != null)
throw new InvalidOperationException();

container = new CompositionContainer(catalog);
AspectServiceLocator.isCacheable = isCacheable;

}

public static Func<T> GetService<T>() where T : class
{

if (isCacheable)
{

return () => new Lazy<T>(GetServiceImpl<T>).Value;
}
else
{

return GetServiceImpl<T>;
}

}

private static T GetServiceImpl<T>()
{

if (container == null)
throw new InvalidOperationException();

return container.GetExport<T>().Value;
}

}

[PSerializable]
public class LogAspect : OnMethodBoundaryAspect
{

private static readonly Func<ILogger> logger;

static LogAspect()
{

if (!PostSharpEnvironment.IsPostSharpRunning)
{

logger = AspectServiceLocator.GetService<ILogger>();
}

}

public override void OnEntry(MethodExecutionArgs args)
{

logger().Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)), true);

LoggedMethod();

Testing and Debugging Aspects

344

}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Dynamic.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

// The ServiceLocator can be initialized for each test.
AspectServiceLocator.Initialize(new TypeCatalog(typeof (TestLogger)), false);

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[LogAspect]
private void TargetMethod()
{
}

}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

Consuming Dependencies from the Aspect

345

}
}

21.3.4. Using Contextual Dependency Resolution
The dependency resolution strategy does not necessarily need to resolve to the same service implementation for all
occurrences of the dependency. It is possible to design a strategy that depends on the context. For instance, the service
locator could accept the aspect type and the target element of code as parameters. Test code could configure the service
locator to resolve dependencies to specific implementations for a given context.
Evaluating context-sensitive rules maybe CPU-intensive, but it needs to be done only during testing. In production mode,
dependency resolution can be delegated to a global service catalog.

Example: testable logging aspect with contextual dependency resolution
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Extensibility;
using PostSharp.Serialization;

namespace DependencyResolution.Contextual
{

public interface ILogger
{

void Log(string message);
}

public static class AspectServiceLocator
{

private static CompositionContainer container;
private static HashSet<object> rules = new HashSet<object>();

public static void Initialize(ComposablePartCatalog catalog)
{

container = new CompositionContainer(catalog);
}

public static Lazy<T> GetService<T>(Type aspectType, MemberInfo targetElement) where T : class
{

return new Lazy<T>(() => GetServiceImpl<T>(aspectType, targetElement));
}

private static T GetServiceImpl<T>(Type aspectType, MemberInfo targetElement) where T : class
{

// The rule implementation is naive but this is for testing purpose only.
foreach (object rule in rules)
{

DependencyRule<T> typedRule = rule as DependencyRule<T>;
if (typedRule == null) continue;

T service = typedRule.Rule(aspectType, targetElement);
if (service != null) return service;

}

if (container == null)
throw new InvalidOperationException();

// Fallback to the container, which should be the default and production behavior.
return container.GetExport<T>().Value;

Testing and Debugging Aspects

346

}

public static IDisposable AddRule<T>(Func<Type, MemberInfo, T> rule)
{

DependencyRule<T> dependencyRule = new DependencyRule<T>(rule);
rules.Add(dependencyRule);
return dependencyRule;

}

private class DependencyRule<T> : IDisposable
{

public DependencyRule(Func<Type, MemberInfo, T> rule)
{

this.Rule = rule;
}

public Func<Type, MemberInfo, T> Rule { get; private set; }

public void Dispose()
{

rules.Remove(this);
}

}
}

[PSerializable]
public class LogAspect : OnMethodBoundaryAspect
{

private Lazy<ILogger> logger;

public override void RuntimeInitialize(MethodBase method)
{

logger = AspectServiceLocator.GetService<ILogger>(this.GetType(), method);
}

public override void OnEntry(MethodExecutionArgs args)
{

logger.Value.Log("OnEntry");
}

}

internal class Program
{

private static void Main(string[] args)
{

AspectServiceLocator.Initialize(new TypeCatalog(typeof (ConsoleLogger)));

LoggedMethod();
}

[LogAspect]
public static void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

Consuming Dependencies from the Aspect

347

using System;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.Contextual.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

// The ServiceLocator can be initialized for each test.
using (

AspectServiceLocator.AddRule<ILogger>(
(type, member) =>
type == typeof (LogAspect) && member.Name == "TargetMethod" ? new TestLogger() : null)

)
{

TestLogger.Clear();
TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}
}

[LogAspect]
public void TargetMethod()
{
}

}

internal class TestLogger : ILogger
{

public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

21.3.5. Importing Dependencies from the Target Object
The principal reason why aspects are believed to be difficult to test is that they are statically scoped by default, i.e. aspect
objects are stored in static fields. However, any aspect can be made instance-scoped if it implements the IInstance-
ScopedAspect interface. See Understanding Aspect Lifetime and Scope on page 304 for more information about aspect
scopes.
Instance-scoped aspects can consume dependencies from the objects to which they are applied. They can also add
dependencies to the target objects.
For instance, an aspect can consume a service ILogger using the following procedure:

Testing and Debugging Aspects

348

To consume a service from an instance-scoped aspect:
1. Add a public property of name Logger and type ILogger to the aspect and add the IntroduceMemberAttribute

custom attribute. This will cause the aspect to add a property to the target class. Use the parameter Member-
OverrideAction.Ignore to ignore the property if it already exists in the target type of if it has been added by
another aspect.

2. Add two custom attributes ImportAttribute and CopyCustomAttributesAttribute to the Logger property. This
will cause the aspect to add the [Import] custom attribute to the Logger property added to the target class.

3. Add a public field of name LoggerProperty and type Property<ILogger> to the aspect class and add the
ImportMemberAttribute custom attribute to this field, with "Logger" as parameter. This will allow the aspect to
read the Logger property even if it has been defined from outside the aspect.

4. The aspect can now consume the dependency by calling this.LoggerProperty.Get().

The procedure is illustrated in the next example.

Example: testable logging aspect that consumes the dependency from the target object
The following code snippet shows a logging aspect and how it could be used in production code:

using System;
using System.Collections.Generic;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.ComponentModel.Composition.Primitives;
using System.ComponentModel.Design;
using System.Reflection;
using PostSharp.Aspects;
using PostSharp.Aspects.Advices;
using PostSharp.Extensibility;
using PostSharp.Reflection;
using PostSharp.Serialization;

namespace DependencyResolution.InstanceScoped
{

public interface ILogger
{

void Log(string message);
}

[PSerializable]
public class LogAspect : OnMethodBoundaryAspect, IInstanceScopedAspect
{

[IntroduceMember(Visibility = Visibility.Family, OverrideAction = MemberOverrideAction.Ignore)]
[CopyCustomAttributes(typeof (ImportAttribute))]
[Import(typeof(ILogger))]
public ILogger Logger { get; set; }

[ImportMember("Logger", IsRequired = true)]
public Property<ILogger> LoggerProperty;

public override void OnEntry(MethodExecutionArgs args)
{

this.LoggerProperty.Get().Log("OnEntry");
}

object IInstanceScopedAspect.CreateInstance(AdviceArgs adviceArgs)
{

return this.MemberwiseClone();
}

void IInstanceScopedAspect.RuntimeInitializeInstance()
{
}

Consuming Dependencies from the Aspect

349

}

[Export(typeof (MyServiceImpl))]
internal class MyServiceImpl
{

[LogAspect]
public void LoggedMethod()
{

Console.WriteLine("Hello, world.");
}

}

internal class Program
{

private static void Main(string[] args)
{

AssemblyCatalog catalog = new AssemblyCatalog(typeof (Program).Assembly);
CompositionContainer container = new CompositionContainer(catalog);
MyServiceImpl service = container.GetExport<MyServiceImpl>().Value;
service.LoggedMethod();

}
}

[Export(typeof (ILogger))]
internal class ConsoleLogger : ILogger
{

public void Log(string message)
{

Console.WriteLine(message);
}

}
}

The following code snippet shows how the logging aspect can be tested:

using System;
using System.ComponentModel.Composition;
using System.ComponentModel.Composition.Hosting;
using System.Text;
using Microsoft.VisualStudio.TestTools.UnitTesting;

namespace DependencyResolution.InstanceScoped.Test
{

[TestClass]
public class TestLogAspect
{

[TestMethod]
public void TestMethod()
{

TypeCatalog catalog = new TypeCatalog(typeof (TestLogger), typeof (TestImpl));
CompositionContainer container = new CompositionContainer(catalog);
TestImpl service = container.GetExport<TestImpl>().Value;
TestLogger.Clear();
service.TargetMethod();
Assert.AreEqual("OnEntry" + Environment.NewLine, TestLogger.GetLog());

}

[Export(typeof (TestImpl))]
private class TestImpl
{

[LogAspect]
public void TargetMethod()
{
}

}
}

[Export(typeof (ILogger))]
internal class TestLogger : ILogger

Testing and Debugging Aspects

350

{
public static readonly StringBuilder stringBuilder = new StringBuilder();

public void Log(string message)
{

stringBuilder.AppendLine(message);
}

public static string GetLog()
{

return stringBuilder.ToString();
}

public static void Clear()
{

stringBuilder.Clear();
}

}
}

21.4. Testing Build-Time Logic
Testing build-time logic of aspects has specific challenges:

• Aspects can emit errors and warnings, which cannot be tested using a run-time testing framework. We need a
mechanism to test error messages themselves.

• When a project contains a large number of test cases (which are all compiled at the same time), it is difficult to
isolate one specific case when the debugger is attached to the build process (see Debugging Build-Time Aspect
Logic on page 355). We need a mechanism to run the build process on a single test case.

Therefore, we built a test framework specifically for the purpose of testing aspects.
This topic contains the following sections:

• Creating an aspect unit test project on page 351
• Executing a single test on page 352
• Executing all tests from a directory on page 352
• Executing all tests in the project directory on page 352
• Test that messages are emitted on page 352
• Allow unsafe code on page 352
• Creating a reference assembly on page 352

Creating an aspect unit test project
To create an aspect unit test project:

1. Create a console project and add all required references to it.
2. Add PostSharp to this project
3. Edit the project file using a text editor. The project file must import PostSharp.BuildTests.targets before

Microsoft.CSharp.targets (download28). File PostSharp.targets also needs to be included (which is the case if the
PostSharp NuGet package is added to the project).

4. Implement each test case as a standalone file having its own Program class and Main method. To avoid naming
conflicts, every file should have a distinct namespace.

28. http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

Testing Build-Time Logic

351

http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets
http://www.postsharp.net/downloads/samples/3.0/PostSharp.BuildTests.targets

A test is considered successful in the following situations:
• the test compiles using the C# or VB compiler, and
• the test compiles using PostSharp without any unexpected message (see below), and
• the output exe is valid according PEVERIFY, and

• the output exe executes successfully and returns the exit code 0,

This default behavior can be altered by test directives, as described below.

Executing a single test
Execute the following line from the command prompt:

msbuild /t:TestOne /p:Source=MyFile.cs

Executing all tests from a directory
Execute the following line from the command prompt:

msbuild /t:Test /p:SourceDir=MyDirectory

Executing all tests in the project directory
Execute the following line from the command prompt:

msbuild /t:Test

Test that messages are emitted
If the test is expected to emit a message (error, warning, information), insert the text @ExpectedMessage(PS0001) in the
test file as a comment line.
If this directive is present, the test will be valid if and only if all expected messages, and no other, have been emitted.

Allow unsafe code
To enable unsafe code and disable verification by PEVERIFY, insert the text @Unsafe in the test file as a comment line.

Creating a reference assembly
In case that a test requires a dependency assembly (typically, for tests that require two assemblies, for instance testing
aspect inheritance that cross assembly boundaries), you can create a second file named MyTest.Dependency.cs, if the
first file is named MyTest.cs. This will create an assembly MyTest.Dependency.dll, and main test will have a reference to
this assembly.

21.5. Debugging Run-Time Aspect Logic
Enhancing your code with aspects gives you a new dimension to your debugging experience. With PostSharp, patterns are
implemented in classes that are separate from the business logic. Most of the time, you will want to debug just the business
logic. But sometimes, you will want to debug the aspects: aspect code will now be skipped by default during step-into
sessions and in the call stack window.
This topic contains the following sections:

• Stepping into aspect code on page 353

Testing and Debugging Aspects

352

• Showing aspects code in the call stack window on page 353
• Disabling debugger enhancements on page 354

Stepping into aspect code
Suppose you have a SayHello method intercepted by an Intercept aspect. You are about to step into the SayHello
method. By default, the debugger steps over the code of the Intercept aspect and then breaks in the beginning of the
SayHello method. When Step Into Aspects is enabled, the debugger will step into the Intercept aspect.

The Step Into Aspects feature is disabled by default. To turn it on, go to the menu PostSharp / Options, then to the
General tab and the Debugging section, and check the Step Into Aspects checkbox. Now you can step into aspects
using the Step Into (F11) command of the debugger.

Showing aspects code in the call stack window
By default, all the calls to the methods of the Intercept aspect are hidden behind one stack frame named [Aspect
Code]. Suppose you have the SayHello method intercepted by the Intercept aspect like in the example above. You are
inside the SayHello method. In the call stack, all the methods introduced by PostSharp are hidden.

Sometimes you may need to see the real call stack that includes all intermediate method calls generated by PostSharp.
This is the purpose of the Show Aspects Code in Call Stack feature.
To turn it on, go to the menu PostSharp / Options, then to the General tab and the Debugging section, and check the
Show Aspects Code in Call Stack checkbox. Now, the call stack includes all the methods introduced by PostSharp.

Debugging Run-Time Aspect Logic

353

Disabling debugger enhancements
PostSharp improves your debugging experience by installing extensions for the Visual Studio Debugger and by
enhancing PDB files during the build. In some use cases you may want to disable these PostSharp debugger extensions
and revert back to the default debugging behavior in Visual Studio (e.g. building for a new or unsupported target
framework, debugging code on unsupported devices, working around bugs, etc.).

To disable PostSharp debugger extensions:
1. Right-click on your solution in the Solution Explorer and then click Properties
2. On the PostSharp page of the displayed solution property pages dialog select the check box Disable

debugging experience improvements.

3. Confirm the change by clicking OK and then rebuild your solution.

NOTE
Debugging extensions are automatically disabled when you build your project using MSBuild from outside Visual
Studio.

CAUTION NOTE
If you build a solution with debugging extensions enabled, you must debug the solution with an instance of Visual
Studio where debugging extensions are enabled, otherwise your debugging experience will be frustrating.

Testing and Debugging Aspects

354

21.6. Debugging Build-Time Aspect Logic
It may seem unusual to debug compile-time logic, but like any process, it is perfectly legal and even simple to debug the
build process!
Basically, what you will do is to attach a debugger to the PostSharp process. If you use the standard MSBuild targets for
PostSharp, define the constant PostSharpAttachDebugger=True.

The trick is easier to explain when you have compile-time logic (your aspect, for instance) and the transformed assembly in
different Visual Studio projects.
Suppose you have your aspects logic MyAspects.csproj and unit tests (i.e. the code to be transformed) in MyAspects.
Test.csproj. The easiest way to debug MyAspects.csproj is the following:

To debug the build-time logic of an aspect:
1. Open Visual Studio and load the solution containing MyAspects.csproj.

2. Open the Visual Studio Command Prompt and go to the directory containing MyAspects.Test.csproj.

3. Build MyAspects.csproj using Visual Studio as usually .

4. From the command prompt, type:
msbuild MyAspects.Test.csproj /T:Rebuild /P:PostSharpAttachDebugger=True

5. The build process will hit a break point. When it happens, attach the instance of MyAspects.csproj Visual Studio.

NOTE
Because of a bug in Visual Studio, you need to use the mixed debugging engine. To do that, check the option
Manually choose the debugging engines in the Visual Studio Just-In-Time Debugger and select both the
managed and the native engines.

6. Set up break points in your code and continue the program execution.

Debugging Build-Time Aspect Logic

355

Testing and Debugging Aspects

356

CHAPTER 22

Validating Architecture

Besides aspect-oriented programming, you can use PostSharp to validate your source code against architecture and design
rules named constraints. Constraints are piece of codes that validate the code against specific rules at build time.
PostSharp provides ready-made constraints for the following scenarios:

• Restricting Interface Implementation on page 357
• Controlling Component Visibility Beyond Private and Internal on page 361

Additionally, you can develop custom constraints to enforce your own design rules. For details, see Developing Custom
Architectural Constraints on page 369.

22.1. Restricting Interface Implementation
Under some circumstances you may want to restrict users of an API to implement an interface. You may want to allow them
to consume the interface but not to implement it in their own classes, so that, later, you can add new members to this
interface without breaking the user's code. If retaining the interface as a public artifact is required, the programming
language does not give you any option to enforce the desired restriction. Enter the InternalImplementAttribute from
PostSharp.
This topic contains the following sections:

• Adding the constraint to the interface on page 357
• Emitting an error instead of a warning on page 360
• Ignoring warnings on page 360

Adding the constraint to the interface
To restrict implementation of publicly declared interfaces you simply need to add [InternalImplementAttribute] to
that interface.

Restricting Interface Implementation

357

NOTE
This procedure requires PostSharp Tools for Visual Studio29 to be installed on your machine. You can however achieve
the same results by editing the code and the project manually.

1. Place the caret over the interface that you want to add the attribute select the "Add architectural constraint...".

2. Select "Prevent interface implementation in a different assembly" and select Next.

29. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Validating Architecture

358

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

3. Verify that you will be adding the InternalImplementAttribute attribute to the correct piece of code.

4. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look
at the changes that were made to your codebase.

Restricting Interface Implementation

359

5. You'll notice that the only thing that has changed in the code is the addition of the [InternalImplement-
Attribute] attribute.

[InternalImplement]
public interface ICustomerRepository
{

IEnumerable<Customer> FetchAll();
}

Once that is done, implementing the interface that was decorated with the InternalImplementAttribute from another
assembly will create a compile time warning.

NOTE
To perform this architectural validation the project that is trying to implement the interface will need to be processed
by PostSharp.

Emitting an error instead of a warning
If a warning isn't strong enough for your environment you can change the output to a compile time error by setting the
InternalImplementAttribute to have a Severity type of Error.

[InternalImplement(Severity = SeverityType.Error)]
public interface ICustomerRepository
{

IEnumerable<Customer> FetchAll();
}

Now any reference to the decorated interface from another assembly will generate an error and fail the compilation of
your project.

Ignoring warnings
If you are trying to implement a constrained interface in a separate assembly and you want to override the warning
being generated there is a solution available for you. The IgnoreWarningAttribute attribute can be applied to stop
warnings from being generated.

NOTE
The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors,
those errors will still be generated even if the IgnoreWarningAttribute attribute is present.

To suppress warnings all that you need to do is add the IgnoreWarningAttribute attribute to the offending piece of
code. In this example we would suppress the warning being generated by adding the attribute to the class that is

Validating Architecture

360

implementing the constrained interface. Once we have done that, the warning generated for that specific implemen-
tation would be suppressed. All other locations that are implementing this interface will continue to generate their
warnings.

NOTE
You may wonder where the identifier AR0101 comes from. IgnoreWarningAttribute actually works with any PostSharp
warning and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error
identifiers in Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You
will see warnings including their identifiers.

[IgnoreWarning("AR0101")]
public class PreferredCustomerRepository : ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

return null;
}

}

22.2. Controlling Component Visibility Beyond Private and
Internal
When you are working on applications it's common to run across situations where you want to restrict access to a
component you have written. Usually you control this access using the private and/or internal keywords when defining the
component. A class marked as internal can be accessed by any other class in the same assembly, but that may not be the
level of restriction needed within the codebase. Access to a private class is restricted to those components that are inside
the same class or struct that contains the private class, which prevents any other classes from accessing it. In one situation
we are restricting access to the component to only the class or struct that contains it. In the other situation we are allowing
access to the component from any other component that is in the same assembly. What if needed something in between?
PostSharp offers the ability to define component access rules that exist between the scope of the internal and private
keywords. This gives us the opportunity to restrict access to a component only from other components in the same
namespace. We can also restrict access to a select few other components.
As an example let's look at a data access related class. As a precaution against developer's circumventing our data access
structure we want to limit access to this repository class.
This topic contains the following sections:

• Restricting access to specific namespaces on page 361
• Restricting access to specific types on page 365
• Controlling component visibility outside of the containing assembly on page 365
• Emitting errors instead of warnings on page 368
• Ignoring warnings on page 369

Restricting access to specific namespaces

NOTE
This procedure requires PostSharp Tools for Visual Studio30 to be installed on your machine. You can however achieve
the same results by editing the code and the project manually.

Controlling Component Visibility Beyond Private and Internal

361

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

To limit access of a class only to other classes within the validation namespace:
1. Put the caret on the internal class that should have restricted access. Select "Add architectural constraint..."

from the smart tag options.

2. Select "Prohibit use outside of given types" from the list of options.

30. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Validating Architecture

362

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

3. Verify that you will be adding the ComponentInternalAttribute attribute to the correct piece of code.

4. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look
at the changes that were made to your codebase.

Controlling Component Visibility Beyond Private and Internal

363

5. You'll notice that the only thing that has changed in the code is the addition of the [ComponentInternal-
Attribute] attribute.

namespace Sharpcrafters.Crm.Console.Repositories
{

public class InvoiceRepository
{

[ComponentInternal]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}
}

}

6. The [ComponentInternalAttribute] attribute is templated to accept a string for the namespace that should
be able to access this method. There are two options that you could use. The first is to pass the attribute an
array of typeof(...) values that represents the types that can access this method. The second option is to
pass in an array of strings that contain the namespaces of the code that should be able to access this method.
For our example, replace the typeof(TODO) with a string for the validation namespace.

7. If you try to access this component from a namespace that hasn't been granted access you will see a compile
time warning in the Output window.

namespace Sharpcrafters.Crm.Console.Services
{

public class InvoiceServices
{

public IEnumerable<InvoiceForList> FetchAllInvoicesForCustomer(Guid id)
{

var invoiceRepository = new InvoiceRepository();

var allInvoices = invoiceRepository.FetchAllForCustomer(id);
return

allInvoices.Where(x => !x.PaidInFull).Select(
x => new InvoiceForList

{
PurchaseDate = x.PurchaseDate,
ShipDate = x.ShipDate,
TotalAmount = x.Total

});
}

}
}

NOTE
If you are trying to access the component from a namespace that is in a different project you will need Post-
Sharp to process that project for the validation to occur.

Validating Architecture

364

Restricting access to specific types
Under some circumstances namespace level restrictions may not be tight enough for your needs. In that situation you
have the ability to apply this constraint at a type level.

1. To restrict access at a component type level you need to explicitly define which component types will have
access. This is done by passing types into the constructor of the ComponentInternalAttribute attribute's
constructor. The construct accepts an array of Type which allows you to define many different component
types that should be granted access.

public class InvoiceRepository
{

[ComponentInternal(typeof(Sharpcrafters.Crm.Console.Services.InvoiceServices))]
internal IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}
}

2. Now if you try to access this component from a type that hasn't been granted access you will see a compile
time warning in the Output window.

public class CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

Controlling component visibility outside of the containing assembly
Because of framework limitations or automated testing requirements you sometimes need to declare components as
public so that you can perform the desired tasks or testing. For some of those components you probably don't want
external applications accessing them. For instance, WPF controls need a default constructor for use in the designer, but
sometimes you want another constructor to be used at runtime, so you want to prevent the default constructor to be
used from code.
PostSharp offers you the ability to decorate a publically declared component in such a way that it is not accessible by
applications that reference its assembly. All you need to do is apply the InternalAttribute attribute.

1. Let's mark the Customer class so that it can only be accessed from the assembly it resides in.

namespace Sharpcrafters.Crm.Core
{

public class Customer
{

public int Id { get; set; }
public string Name { get; set; }

}
}

Controlling Component Visibility Beyond Private and Internal

365

2. Place the caret on the publically declared component that you want to restrict external access to and expand
the smart tag. Select "Add architectural constraint" This procedure requires PostSharp Tools for Visual Studio31

to be installed on your machine. You can however achieve the same results by editing the code and the
project manually..

3. When prompted to select a constraint, choose to "Prohibit use outside of the project".

31. https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

Validating Architecture

366

https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a
https://visualstudiogallery.msdn.microsoft.com/a058d5d3-e654-43f8-a308-c3bdfdd0be4a

4. The summary page gives you the opportunity to review the selections that you have made. If you notice that
the configuration is not what you wanted you can click the Previous button and adjust your selections. If the
configuration meets your needs click Next. In this demo you will see that the [InternalAttribute] attribute is
being added to the Customer class.

5. Once the download, installation and configuration of PostSharp has finished you can close the wizard and look
at the changes that were made to your codebase.

Controlling Component Visibility Beyond Private and Internal

367

6. You'll notice that the only thing that has changed in the code is the addition of the [InternalAttribute]
attribute.

namespace Sharpcrafters.Crm.Core
{

[Internal]
public class Customer
{

public int Id { get; set; }
public string Name { get; set; }

}
}

7. When you attempt to make use of that public component in a different assembly a compile time warning will
appear in the Output window.

namespace Sharpcrafters.Crm.Console.Repositories
{

public class CustomerRepository:ICustomerRepository
{

public IEnumerable<Customer> FetchAll()
{

return new List<Customer>{new Customer{Id=1,Name="Joe Johnson"}};
}

}
}

NOTE
The assembly that is attempting to use the public component will need to reference PostSharp for this
validation to occur.

Emitting errors instead of warnings
By default any situation that breaks the access rules defined by the application of the ComponentInternalAttribute or
InternalAttribute attribute will generate a compile time warning. It's possible to escalate this warning to the error
level.

1. Changing the output warning to an error requires you to set the Severity level.

[ComponentInternal(typeof (InvoiceServices), Severity = SeverityType.Error)]
public IEnumerable<Invoice> FetchAllForCustomer(Guid id)
{

//dostuff
return null;

}

2. Now when you try to access the component when access hasn't been granted the Output window will display
an error message.

Validating Architecture

368

Ignoring warnings
There may be specific situations where you want to supress the warning message that is being generated at compile
time. In those cases you can apply the IgnoreWarningAttribute attribute to the locations where you want to allow
access to the component.

NOTE
The IgnoreWarningAttribute attribute will only suppress warnings. If you have escalated the warnings to be errors,
those errors will still be generated even if the IgnoreWarningAttribute attribute is present.

If you wanted to allow access to the constrained component in a specific method you could add the IgnoreWarning-
Attribute attribute to that method.

public class CustomerServices
{

[IgnoreWarning("AR0102")]
public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

NOTE
AR0102 is the identifier of the warning emitted by ComponentInternalAttribute. To ignore warnings emitted by
Internal, use the identifier AR0104.

You may wonder where these identifiers come from. IgnoreWarningAttribute actually works with any PostSharp
warning and not just this one. Any build error, whether from MSBuild, C# or PostSharp, has an identifier. To see error
identifiers in Visual Studio, open the View menu and click on the Output item, select "Show output from: Build". You
will see warnings including their identifiers.

If you wanted to allow access in an entire class you could add the IgnoreWarningAttribute attribute at the class level.
Any access to the constrained component within the class would have its warning suppressed.

[IgnoreWarning("AR0102")]
public class CustomerServices
{

public IEnumerable<Customer> FetchAll()
{

var invoiceRepository = new InvoiceRepository();
var allInvoices = invoiceRepository.FetchAllForCustomer(Guid.NewGuid());

}
}

22.3. Developing Custom Architectural Constraints
When you are creating your applications it is common to adopt custom design patterns that must be respected across all
modules. Custom design patterns have the same benefits as standard ones, but they are specific to your application. For
instance, the team could decide that every class derived from BusinessRule must have a nested class named Factory,
derived from BusinessRulesFactory, with a public default constructor.

Developing Custom Architectural Constraints

369

Even performing line-by-line code reviews can miss violations of the pattern. Is there a better way to ensure that this
doesn't happen? PostSharp offers the ability create custom architectural constraints. The constraints that you write are able
to verify anything that you can query using reflection.
There are two kinds of constraints: scalar constraints and referential constraints.
This topic contains the following sections:

• Creating a scalar constraint on page 370
• Creating a referential constraint on page 372
• Validating the constraint itself on page 374
• Ignoring warnings on page 375

Creating a scalar constraint
Scalar constraints typically validate an element of code, while referential constraints validate how an element of code is
being used.
Let's start with a scalar constraint and create a constraint that verifies the first condition our BusinessRule design
pattern: that any class derived from BusinessRule must have a nested class named Factory. We can model this
condition as a scalar constraint that applies to any class derived from BusinessRule. Therefore, we will create a type-
level scalar constraint, apply it to the BusinessRule class, and use attribute inheritance to have the constraint automat-
ically applied to all derived classes.

1. Create a class that inherits from the ScalarConstraint class in PostSharp.

using System;
public class BusinessRulePatternValidation : ScalarConstraint
{
}

2. Designate what code construct type this validation aspect should work for by adding the Multicast-
AttributeUsageAttribute attribute. In this case we want the validation to occur on types only, and we want
to enable inheritance.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{
}

3. Override the ValidateCode(Object) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{
}

}

Validating Architecture

370

4. Create a rule that checks that there's a nested type called Factory. You'll note that the target parameter for
the ValidateCode(Object) method is an object type. Depending on which target type you declare in the
MulticastAttributeUsageAttribute attribute, the value passed through this parameter will change. For
MulticastTargets.Type the type passed is Type. To make use of the target for validation you must cast to
that type first.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type) target;

if (targetType.GetNestedType("Factory") == null)
{

// Error
}

}
}

NOTE
Valid types for the target parameter of the ValidateCode(Object) method include Assembly, Type,
MethodInfo, ConstructorInfo, PropertyInfo, EventInfo, FieldInfo, and ParameterInfo.

5. Write a warning that the rule being broken to the Output window in Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Warning,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

6. Attach the rule to the code that needs to be protected. For this example we want to add this rule to the
BusinessRule class.

[BusinessRulePatternValidation]
public class BusinessRule
{

// No Factory class here.
}

NOTE
This example shows applying the constraint to only one class. If you want to apply a constraint to large
portions of your codebase, read the section on Adding Aspects to Multiple Declarations on page 187

Developing Custom Architectural Constraints

371

7. Now if you compile the project you will see an error in the Output window of Visual Studio when you run a
build.

8. In some circumstances you may determine that a warning isn't aggressive enough. We can alter the rule that
you have created so that it outputs a compile time error instead. All that you need to do is change the
SeverityType in the Message.Write to Error.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target)
{

var targetType = (Type)target;

if (targetType.GetNestedType("Factory") == null)
{

Message.Write(
targetType, SeverityType.Error,
"2001",
"The {0} type does not have a nested type named 'Factory'.",
targetType.DeclaringType,
targetType.Name);

}
}

}

Using this technique it is possible to create rules or restrictions based on a number of different criteria and implement
validation for several design patterns.
When you are working on projects you need to ensure that they adhere to the ideals and principles that our project
teams hold dear. As with any process in software development, manual verification is guaranteed to fail at some point in
time. As you do in other areas of the development process, you should look to automate the verification and
enforcement of our ideals. The ability to create custom architectural constraints provides both the flexibility and verifi-
cation that you need to achieve this goal.

Creating a referential constraint
Now let's create a referential constraint that verifies the second condition our BusinessRule design pattern: that the
BusinessRule class can only be used in the Controllers namespace. You can model this condition as a referential
constraint and apply the constraint to any class in your codebase. If you apply this constraint to the entirety of your
codebase you will ensure that the BusinessRule design pattern is only referenced in the Controllers namespace.

1. Create a class that inherits from the ReferentialConstraint class in PostSharp.

public class BusinessRuleUseValidation : ReferentialConstraint
{
}

Validating Architecture

372

2. Declare that this aspect should work only on types by adding the MulticastAttributeUsageAttribute
attribute to the class.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRuleUseValidation : ReferentialConstraint
{
}

3. Override the ValidateCode(Object, Assembly) method.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
BusinessRuleUseValidation : ReferentialConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{
}

}

4. Create the rule that checks for the use of the BusinessRule type in the target code.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch

.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

// Warning
}

}
}

NOTE
The rule here makes use of the ReflectionSearch helper class that is provided by the PostSharp framework.
This class, along with others, is an extension to the built in reflection functionality of .NET and can be used
outside of aspects as well.

5. Write a warning message to be included in the Output window of Visual Studio.

[MulticastAttributeUsage(MulticastTargets.Class, Inheritance = MulticastInheritance.Strict)]
public class BusinessRulePatternValidation : ScalarConstraint
{

public override void ValidateCode(object target, Assembly assembly)
{

var targetType = (Type) target;
var usages = ReflectionSearch
.GetMethodsUsingDeclaration(typeof (BusinessRule));

if (usages !=null)
{

Message.Write(
targetType, SeverityType.Warning,
"2002",
"The {0} type contains a reference to 'BusinessRule'" +
"which should only be referenced from Controllers.",
targetType.Name);

}
}

}

Developing Custom Architectural Constraints

373

6. Attach the referential constraint that you created to any code that needs to be checked. In this example, add
an attribute to the AccountRepository class.

namespace PostSharp.Architecture.Repositories
{

[BusinessRuleUseValidation]
public class AccountRepository
{

public void AddAccount(string name)
{

var businessRule = new BusinessRule();
businessRule.DoStuff();

}
}

}

NOTE
This example shows applying the constraint to only one class. If you want to apply this constraint to a larger
portion of your codebase, read the section on Adding Aspects to Multiple Declarations on page 187.

7. Now when you compile the project you will see a warning in the Output window in Visual Studio.

NOTE
If using a warning isn't aggressive enough you can change the SeverityType to Error. Now when the rule is
broken an error will appear in the Output window of Visual Studio and the build will not be successful.

CAUTION NOTE
PostSharp constraints operate at the lowest level. For instance, checking relationships of a type with the rest of the
code does not implicitly check the relationships of the methods of this type. Also, checking relationships of
namespaces is not possible.
Custom attribute multicasting can be used to apply a constraint to a large number of types, for instance all types of a
namespace. But this would result in one constraint instance for every type, method and field on this namespace.
Altough this has no impact on run time, it could severely affect build time. For this reason, the current version of Post-
Sharp Constraints is not suitable to check isolation (layering) of namespaces at large scale.

Referential constraints provide you with the ability to declare architectural design patterns right in your code. By
documenting these patterns right in the codebase you are able to provide easy access for the development team as well
as continual verification that your desired design patterns are being adhered to.

Validating the constraint itself
Now that you have created scalar and referential constraints you can be assured that certain architectural rules are
being consistently implemented in your codebase. There is one thing that is missing though.
With what you have done thus far, it is possible to attach your architectural constraints to any code element in your
projects. This may not be appropriate. For example, the scalar constraint that you created to perform the Business-
RulePatternValidation may be a valid constraint only on classes that exist in the Models namespace.

Validating Architecture

374

Let's look at how we can ensure that this constraint is only enforced on classes that exist in the Models namespace.

1. Open the BusinessRulePatternValidation class that you created earlier.

2. Override the ValidateConstraint(Object) method.

3. Write the validation logic to ensure that this constraint is only applied to classes in the Models namespace.

NOTE
When the ValidateConstraint(Object) method returns true, it tells PostSharp that the constraint should
be applied to that target code element. When the ValidateConstraint(Object) method returns false
PostSharp will not apply the constraint to the target code element.

Now, when the BusinessRulePatternValidation attribute is applied to a class that is not in the Models namespace of
your project, there will be no warning or error added to the Visual Studio Output window.
When the attribute is applied to a class in the Models namespace and that class doesn't pass the constraint's rules you
will continue to see the warning or error indicating this architectural failure.

Ignoring warnings
There will be situations where a constraint is generating a warning that is of no concern. In these exceptional circum-
stances it is best if you remove the warning from the Visual Studio Output window.
To ignore these unnecessary warnings, find the target code that is responsible for generating the warning. Add the
IgnoreWarningAttribute attribute to the target code entering the MessageId of the warning that you want to
suppress.
The MessageId can be found in your constraint where you issue the Message.Write command. The Reason value
performs no function during the suppression of the warning. It exists so that you can provide clear communication as to
why the warning is being ignored.

NOTE
The IgnoreWarningAttribute attribute will only suppress the issuance of Message.Write statements that are assigned
a SeverityType of Warning. If the SeverityType is set to Error the IgnoreWarningAttribute attribute will have no
suppression effect on that statement.

Developing Custom Architectural Constraints

375

	Table of Contents
	Introduction
	Quick Examples
	Why to Use PostSharp
	Which Problems Does PostSharp Solves
	Benefits of Pattern-Aware Compiler Extensions
	Benefits of PostSharp vs Alternatives

	How Does PostSharp Work
	Key Technologies

	How to Learn PostSharp
	Architecture Role: Selecting and Creating Aspects
	Deployment Role: Installing and Deploying PostSharp
	Developer Role: Using Aspects

	What's New in PostSharp
	What's New in PostSharp 4.3
	What's New in PostSharp 4.2
	What's New in PostSharp 4.1
	What's New in PostSharp 4.0
	What's New in PostSharp 3.1
	What's New in PostSharp 3.0
	What's New in PostSharp 2.1
	What's New in PostSharp 2.0
	What's New in PostSharp 1.5

	Deployment and Configuration
	Deployment
	Requirements and Compatibility
	PostSharp Components
	Installing PostSharp Tools for Visual Studio
	Installing PostSharp Into a Project
	Installing PostSharp without NuGet
	Using PostSharp on a Build Server
	Restoring Packages at Build Time
	Using PostSharp with Visual Studio Online

	Upgrading from a Previous Version of PostSharp
	Uninstalling PostSharp
	Deploying PostSharp to End-User Devices
	Executing PostSharp from the Command Line

	Licensing
	Deploying License Keys
	License Audit
	Limitations of PostSharp Express
	Sharing Source Code With Unlicensed Teams
	Installing and Servicing PostSharp License Server
	Using PostSharp License Server

	Configuration
	Configuring Projects in Visual Studio
	Configuring Projects Using MSBuild
	Working with PostSharp Configuration Files
	Configuration File Schema Reference
	Well-Known PostSharp Properties
	Including CLR Objects in Configuration
	Using Expressions in Configuration Files

	Accessing Configuration from Source Code
	Working with Errors, Warnings, and Messages
	Ignoring and Escalating Warnings
	Emitting Errors, Warnings, and Messages

	Resolution of assembly binding redirections
	Reducing Build Time
	Enabling Solution-Wide Build
	Using IncrediBuild and PostSharp Together

	Standard Patterns
	INotifyPropertyChanged
	Walkthrough: Automatically Implementing INotifyPropertyChanged
	Walkthrough: Working with Properties that Depend on Other Objects
	Implementing INotifyPropertyChanging
	Handling Corner Cases
	Integrating with UI Frameworks
	Caliburn.Micro
	MVVM Light

	Understanding the NotifyPropertyChanged Aspect
	Suppressing False Positives

	Parent/Child Relationships
	Walkthrough: Annotating an Object Model for Parent-Child Relationships
	Walkthrough: Enumerating Child Objects
	Walkthrough: Automatically Disposing Children Objects
	Annotating an Object Model programmatically
	Working With Collections
	Using Immutable Collections

	Undo/Redo
	Making Your Model Recordable
	Adding Undo/Redo to the User Interface
	Customizing Undo/Redo Operation Names
	Assigning Recorders Manually
	Adding Callbacks on Undo and Redo
	Understanding the Recordable Aspect

	Contracts
	Walkthrough: Adding Contracts to Code
	Creating Custom Contracts
	Localizing Contract Errors

	Logging
	Walkthrough: Adding Detailed Tracing to a Code Base
	Walkthrough: Customizing Logging
	Walkthrough: Tracing Parameter Values Upon Exception
	Walkthrough: Changing the Logging Back-End

	Adding Aspects to Code
	Adding Aspects Declaratively Using Attributes
	Adding Aspects to a Single Declaration
	Adding Aspects to Multiple Declarations
	Adding Aspects to Derived Classes and Methods
	Overriding and Removing Aspect Instances
	Reflecting Aspect Instances at Runtime
	Understanding Attribute Multicasting
	Understanding Aspect Inheritance

	Adding Aspects Using XML
	Adding Aspects Programmatically using IAspectProvider

	Miscellaneous
	Executing Code Just After the Assembly is Loaded

	Threading Patterns
	Writing Thread-Safe Code with Threading Models
	Freezable Threading Model
	Immutable Threading Model
	Actor Threading Model
	Reader/Writer Synchronized Threading Model
	Synchronized Threading Model
	Thread-Unsafe Threading Model
	Thread Affine Threading Model
	Making a Whole Project or Solution Thread Safe
	Opting In and Out From Thread Safety
	Compatibility of Threading Models
	Enabling and Disabling Runtime Verification
	Run-Time Performance of Threading Model

	Dispatching a Method to Background
	Dispatching a Method to the UI Thread
	Detecting Deadlocks at Runtime

	Custom Patterns
	Developing Custom Aspects
	Developing Simple Aspects
	Injecting Behaviors Before and After Method Execution
	Handling Exceptions
	Injecting Behaviors into Async Methods
	Injecting Behaviors into Iterators
	Intercepting Methods
	Intercepting Properties and Fields
	Intercepting Events
	Introducing Interfaces
	Introducing Custom Attributes
	Introducing Managed Resources

	Understanding Aspect Lifetime and Scope
	Initializing Aspects
	Validating Aspect Usage
	Developing Composite Aspects
	Adding Behaviors to Existing Members
	Introducing Interfaces, Methods, Properties and Events
	Accessing Members of the Target Class
	Adding Aspects Dynamically

	Coping with Several Aspects on the Same Target
	Ordering Advices

	Understanding Interception Aspects
	Understanding Aspect Serialization
	Customizing Aspect Appearance in Visual Studio
	Customizing Aspect Description in Tooltips
	Estimating Code Savings
	Pushing Information to PostSharp Tools Programmatically

	Advanced
	Coping with Custom Object Serializers
	Configuring Aspects

	Testing and Debugging Aspects
	Writing Simple Tests
	Testing that an Aspect has been Applied
	Consuming Dependencies from the Aspect
	Using a Global Composition Container
	Using a Global Service Locator
	Using Dynamic Dependency Resolution
	Using Contextual Dependency Resolution
	Importing Dependencies from the Target Object

	Testing Build-Time Logic
	Debugging Run-Time Aspect Logic
	Debugging Build-Time Aspect Logic

	Validating Architecture
	Restricting Interface Implementation
	Controlling Component Visibility Beyond Private and Internal
	Developing Custom Architectural Constraints

